精英家教网 > 高中数学 > 题目详情
7.如图,在四棱锥P-ABCD中,四边形ABCD为正方形,PA⊥平面ABCD,且PA=AB=2,E为PD中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)求二面角B-PC-D的大小.

分析 (Ⅰ)连结AC,BD,交于点O,连结OE,则OE∥PB,由此能证明PB∥平面AEC.
(Ⅱ)以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,利用向量法能求出二面角B-PC-D的大小.

解答 证明:(Ⅰ)连结AC,BD,交于点O,连结OE,
∵四边形ABCD为正方形,E为PD中点,
∴OE∥PB,
∵OE?平面ACE,PB?平面ACE,
∴PB∥平面AEC.
解:(Ⅱ)∵PA⊥平面ABCD,
∴以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,
∵PA=AB=2,E为PD中点.
∴B(2,0,0),C(2,2,0),D(0,2,0),P(0,0,2),
$\overrightarrow{PB}$=(2,0,-2),$\overrightarrow{PC}$=(2,2,-2),$\overrightarrow{PD}$=(0,2,-2),
设平面PBC的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{PB}•\overrightarrow{n}=2x-2z=0}\\{\overrightarrow{PC}•\overrightarrow{n}=2y-2z=0}\end{array}\right.$,取z=1,得$\overrightarrow{n}$=(1,1,1),
设平面PCD的法向量$\overrightarrow{m}$=(a,b,c),
则$\left\{\begin{array}{l}{\overrightarrow{PC}•\overrightarrow{m}=2a+2b-2c=0}\\{\overrightarrow{PD}•\overrightarrow{m}=2b-2c=0}\end{array}\right.$,取b=1,$\overrightarrow{m}$=(0,1,1),
设二面角B-PC-D的平面角为θ,
则cosθ=$\frac{|\overrightarrow{m}•\overrightarrow{n}|}{|\overrightarrow{m}|•|\overrightarrow{n}|}$=$\frac{|2|}{\sqrt{3}•\sqrt{2}}$=$\frac{\sqrt{6}}{3}$.
∴二面角B-PC-D的大小为arccos$\frac{\sqrt{6}}{3}$.

点评 本题考查线面平行的证明,考查二面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.若A${\;}_{n}^{3}$=8C${\;}_{n}^{2}$,则n的值为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.等比数列{an}的前n项和为Sn,若a1=3,S3=9,求数列{an}的公比与S10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数求导正确的是(  )
A.(sinx)′=-cosxB.(cosx)′=sinxC.(2x)′=x•2x-1D.($\frac{1}{x}$)′=-$\frac{1}{{x}^{2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.做一个无盖的圆柱形水桶,若要使其体积是27π,且用料最省,则圆柱的底面半径为(  )
A.3B.4C.6D.5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在四棱锥P-ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=$\sqrt{2}$.
(Ⅰ)求证:平面PAB⊥平面PDC;
(Ⅱ)线段AB上是否存在异于端点的点G,使二面角C-PD-G的余弦值为$\frac{1}{3}$?若存在,求AG;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为BB1,CD的中点.
(Ⅰ)求证:D1F⊥平面ADE;(Ⅱ)求平面A1C1D与平面ADE所成的二面角(锐角)的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,在多面体EF-ABCD中,ABCD,ABEF均为直角梯形,$∠ABE=∠ABC=\frac{π}{2}$,DCEF为平行四边形,平面DCEF⊥平面ABCD.
(Ⅰ)求证:DF⊥平面ABCD;
(Ⅱ)若△ABD是等边三角形,且BF与平面DCEF所成角的正切值为$\frac{{\sqrt{2}}}{2}$,求二面角A-BF-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.自主招生联盟成形于2009年清华大学等五校联考,主要包括“北约”联盟,“华约”联盟,“卓越”联盟和“京派”联盟,在调查某高中学校高三学生自主招生报考的情况,得到如下结果(  )
①报考“北约”联盟的考生,都没报考“华约”联盟
②报考“华约”联盟的考生,也报考了“京派”联盟
③报考“卓越”联盟的考生,都没报考“京派”联盟
④不报考“卓越”联盟的考生,就报考“华约”联盟
根据上述调查结果,下述结论错误的是(  )
A.没有同时报考“华约”和“卓越”联盟的考生
B.报考“华约”和“京派”联盟的考生一样多
C.报考“北约”联盟的考生也报考了“卓越”联盟
D.报考“京派”联盟的考生也报考了“北约”联盟

查看答案和解析>>

同步练习册答案