精英家教网 > 高中数学 > 题目详情
20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点($\sqrt{3}$,$\frac{1}{2}$).
(1)求椭圆的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,设A(x1,y1),B(x2,y2),满足4y1y2=x1x2
①试证kAB+kBC的值为定值,并求出此定值;
②试求四边形ABCD面积的最大值.

分析 (1)运用椭圆的离心率公式和点满足椭圆方程,解方程可得a,b,进而得到椭圆方程;
(2)①设A(x1,y1),B(x2,y2),C(-x1,-y1),不妨设x1>0,x2>0.设kAC=k>0,将直线AC和直线BD方程代入椭圆方程,解得A,B的坐标,可得C的坐标,再由斜率公式,计算即可得证;
②由①可得四边形ABCD为平行四边形,则四边形ABCD面积S=4S△AOB=4×$\frac{1}{2}$|AB|•d(原点到直线AB的距离为d),运用直线AB和椭圆方程联立,由韦达定理和弦长公式,结合点到直线的距离公式和基本不等式,即可得到最大值.

解答 解:(1)由题意可得e=$\frac{\sqrt{3}}{2}$,即$\frac{c}{a}$=$\frac{\sqrt{3}}{2}$,又a2-b2=c2
椭圆过点($\sqrt{3}$,$\frac{1}{2}$),可得$\frac{3}{{a}^{2}}$+$\frac{1}{4{b}^{2}}$=1,
解得a=2,b=1.
即有椭圆方程为$\frac{{x}^{2}}{4}$+y2=1;
(2)①证明:设A(x1,y1),B(x2,y2),C(-x1,-y1),
不妨设x1>0,x2>0.
设kAC=k>0,∵kAC•kBD=$\frac{{y}_{1}}{{x}_{1}}•\frac{{y}_{2}}{{x}_{2}}$=$\frac{1}{4}$,∴kBD=$\frac{1}{4k}$.
可得直线AC、BD的方程分别为y=kx,y=$\frac{1}{4k}$x.
联立$\left\{\begin{array}{l}{y=kx}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$和$\left\{\begin{array}{l}{y=\frac{1}{4k}x}\\{{x}^{2}+4{y}^{2}=4}\end{array}\right.$,
解得x1=$\frac{2}{\sqrt{1+4{k}^{2}}}$,x2=$\frac{4k}{\sqrt{1+4{k}^{2}}}$.
即有y1=$\frac{2k}{\sqrt{1+4{k}^{2}}}$,y2=$\frac{1}{\sqrt{1+4{k}^{2}}}$.
kAB+kBC=$\frac{{y}_{2}-{y}_{1}}{{x}_{2}-{x}_{1}}$+$\frac{{y}_{2}+{y}_{1}}{{x}_{2}+{x}_{1}}$=$\frac{1-2k}{4k-2}$+$\frac{1+2k}{4k+2}$=-$\frac{1}{2}$+$\frac{1}{2}$=0,
则kAB+kBC的值为定值,且为0;
②由①可得四边形ABCD为平行四边形,
则四边形ABCD面积S=4S△AOB=4×$\frac{1}{2}$|AB|•d(原点到直线AB的距离为d),
设直线AB:y=-$\frac{1}{2}$x+m,
代入椭圆方程可得2x2-4mx+4(m2-1)=0,
则有x1+x2=2m,x1x2=2(m2-1),
即有S=2$\sqrt{1+\frac{1}{4}}$•$\sqrt{4{m}^{2}-8({m}^{2}-1)}$•$\frac{|m|}{\sqrt{1+\frac{1}{4}}}$
=4$\sqrt{{m}^{2}(2-{m}^{2})}$≤4$\sqrt{(\frac{{m}^{2}+2-{m}^{2}}{2})^{2}}$=4,当且仅当m2=1时,取得等号.
即有四边形ABCD面积的最大值为4.

点评 熟练掌握椭圆的定义、标准方程及其性质、直线与椭圆相交问题转化为联立方程得到一元二次方程的根与系数的关系、数量积、基本不等式的性质、三角形的面积计算公式等是解题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知奇函数y=f(x)的导函数f′(x)<0在R恒成立,且x,y满足不等式f(x2-2x)+f(y2-2y)≥0,则$\sqrt{{x^2}+{y^2}}$的取值范围是(  )
A.$[0,2\sqrt{2}]$B.$[0,\sqrt{2}]$C.[1,2]D.$[\sqrt{2},2\sqrt{2}]$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若关于x的方程ax-x-a=0有两个解,则实数a的取值范围是(  )
A.(1,+∞)B.(0,1)C.(0,+∞)D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在平面直角坐标系xOy中,对于直线l:ax+by+c=0和点P1(x1,y1),P2(x2,y2),若P1P2⊥l,垂足为P0,且$\overrightarrow{{P_1}{P_0}}=λ•\;\overrightarrow{{P_0}{P_2}}$,则称点P1,P2关于直线l成“λ对称”.若曲线C上存在点P1,P2关于直线l成“λ对称”,则称曲线C为“λ对称曲线”.
(1)设P1(0,3),P2(3,0),若点P1,P2关于直线l成“$\frac{1}{2}$对称”,求直线l的方程;
(2)设直线l:x-y+1=0,判断双曲线x2-y2=1是否为“λ对称曲线”?请说明理由;
(3)设直线l:x+y=0,且抛物线y=x2-m为“2对称曲线”,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,设A,B分比为椭圆E$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右顶点,P是椭圆E上不同于A,B的一动点,点F是椭圆E的右焦点,直线l是椭圆E的右准线,若直线AP与直线:x=a和l分别相较于C,Q两点,FQ与直线BC交于M.
(1)求BM:MC的值;
(2)若椭圆E的离心率为$\frac{\sqrt{3}}{2}$,直线PM方程为x+2$\sqrt{3}$y-8=0,求椭圆E的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,已知E,F分别是矩形ABCD的边BC,CD的中点,EF与AC交于点G,若$\overrightarrow{AB}=\overrightarrow{a}$,$\overrightarrow{AD}=\overrightarrow{b}$,用$\overrightarrow{a},\overrightarrow{b}$表示$\overrightarrow{AG}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某校团委会组织该校高中一年级某班以小组为单位利用周末时间进行了一次社会实践活动,且每个小组有5名同学,在实践活动结束后,学校团委会对该班的所有同学都进行了测评,该班的A、B两个小组所有同学所得分数(百分制)的茎叶图如图所示,其中B组一同学的分数已被污损,但知道B组学生的平均分比A组学生的平均分高1分.
(Ⅰ)若在A,B两组学生中各随机选1人,求其得分均超过86分的概率;
(Ⅱ)若校团委会在该班A,B两组学生得分超过80分的同学中随机挑选3人参加下一轮的参观学习活动,设B组中得分超过85分的同学被选中的个数为随机变量ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.某校高三(1)班的一次数学测试成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题.

(1)求全班人数及分数在[80,90)之间的频数;
(2)估计该班的平均分数,并计算频率分布直方图中[80,90)间的矩形的高;
(3)若要从分数在[80,100]之间的试卷中任取两份分析学生失分情况,在抽取的试卷中,求至少有一份分数在[90,100]之间的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.如图,在△ABC中,$\overrightarrow{AD}$=$\frac{2}{3}$$\overrightarrow{AC}$,$\overrightarrow{BP}$=$\frac{1}{3}$$\overrightarrow{BD}$,若$\overrightarrow{AP}$=λ$\overrightarrow{AB}$+μ$\overrightarrow{AC}$,则$\frac{λ}{μ}$的值为3.

查看答案和解析>>

同步练习册答案