精英家教网 > 高中数学 > 题目详情
11.若关于x的方程ax-x-a=0有两个解,则实数a的取值范围是(  )
A.(1,+∞)B.(0,1)C.(0,+∞)D.

分析 当0<a<1时,函数f(x)=ax-x-a在R上是单调减函数,从而可判断;当a>1时,作函数y=ax与y=x+a的图象,结合图象可得.

解答 解:①当0<a<1时,
函数f(x)=ax-x-a在R上是单调减函数,
故方程ax-x-a=0不可能有两个解;
②当a>1时,
作函数y=ax与y=x+a的图象如下,

直线y=x+a过点(0,a),且k=1;
而y=ax过点(0,1),且为增函数,增长速度越来越快;
故函数y=ax与y=x+a的图象一定有两个交点,
综上所述,实数a的取值范围是
(1,+∞);
故选:A.

点评 本题考查了分类讨论与数形结合的思想应用,同时考查了函数与方程的关系应用及函数性质的判断与应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.一个算法的程序框图如图所示,该程序输出的结果为(  )
A.$\frac{10}{11}$B.$\frac{36}{55}$C.$\frac{5}{11}$D.$\frac{72}{55}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知$sin(π+α)=\frac{1}{3}$,则cos2α=(  )
A.$\frac{7}{9}$B.$\frac{8}{9}$C.$-\frac{7}{9}$D.$\frac{{4\sqrt{2}}}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.锐角△ABC中,角A,B,C所对的边分别为a,b,c,bcosA+acosB=$\sqrt{3}$R,(R为△ABC外接圆的半径),若c=2,则△ABC面积的最大值为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=$\left\{\begin{array}{l}4\\{x}^{2}+4x-3\end{array}\right.\begin{array}{c}x≥m\\,x<m\end{array}\right.$,若函数g(x)=f(x)-2x恰有三个不同的零点,则实数m的取值范围是(1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}{1+\frac{4}{x},x≥4}\\{lo{g}_{2}x,x<4}\end{array}\right.$,若关于x的方程f(x)=k有两个不同的根,则实数k的取值范围是(  )
A.(-∞,1)B.(-∞,2)C.[1,2)D.(1,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xoy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,过椭圆C的右焦点F作两条互相垂直的弦EF与MN,当直线EF斜率为0时,|EF|+|MN|=7.
(1)求椭圆C的方程;
(2)求|EF|+|MN|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,且过点($\sqrt{3}$,$\frac{1}{2}$).
(1)求椭圆的标准方程;
(2)四边形ABCD的顶点在椭圆上,且对角线AC,BD过原点O,设A(x1,y1),B(x2,y2),满足4y1y2=x1x2
①试证kAB+kBC的值为定值,并求出此定值;
②试求四边形ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=|x+a|+|2x-1|,a∈R.
(Ⅰ)当a=1时,求不等式f(x)≥3的解集;
(Ⅱ)若不等式f(x)≤2x的解集包含[$\frac{1}{2}$,1],求a的取值范围.

查看答案和解析>>

同步练习册答案