| A. | (-∞,1) | B. | (-∞,2) | C. | [1,2) | D. | (1,2) |
分析 分类讨论:当x≥4时,f(x)=1+$\frac{4}{x}$是减函数,且1<f(x)≤2;当x<4时,f(x)=log2x在(0,4)上是增函数,且f(x)<f(4)=2;从而化方程f(x)=k的根为
函数f(x)与y=k的图象的交点;从而解得.
解答
解:①当x≥4时,
f(x)=1+$\frac{4}{x}$是减函数,且1<f(x)≤2;
②当x<4时,
f(x)=log2x在(0,4)上是增函数,
且f(x)<f(4)=2;
且关于x的方程f(x)=k有两个不同的根可化为函数f(x)与y=k有两个不同的交点;
故实数k的取值范围是(1,2);
故选:D.
点评 本题考查了方程的根与函数的图象的交点的关系应用及数形结合的图象应用,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | -$\frac{\sqrt{2}}{2}$ | C. | 1或-$\frac{\sqrt{2}}{2}$ | D. | 1或$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com