·ÖÎö £¨1£©ÉèP0£¨x0£¬y0£©£¬ÓÉ$\overrightarrow{{P}_{1}{P}_{0}}$=$\frac{1}{2}$$\overrightarrow{{P}_{0}{P}_{2}}$£¬¿ÉµÃx0=1£¬y0=2£¬¼´¿ÉÇóÖ±ÏßlµÄ·½³Ì£»
£¨2£©Ö±Ïßl£ºx-y+1=0ÓëÆäÖн¥½üÏßx-y=0ƽÐУ¬Ë«ÇúÏßx2-y2=1²»ÊÇΪ¡°¦Ë¶Ô³ÆÇúÏß¡±£»
£¨3£©ÉèÖ±ÏßP1P2£ºy=x+t£¬ÓÉ$\left\{{\begin{array}{l}{y=x+t}\\{y={x^2}-m}\end{array}}\right.$⇒x2-x-t-m=0£¬ÓÉ$\overrightarrow{{P}_{1}{P}_{0}}$=2$\overrightarrow{{P}_{0}{P}_{2}}$£¬¿ÉµÃx0=$\frac{{x}_{1}+2{x}_{2}}{3}$£¬y0=$\frac{{y}_{1}+2{y}_{2}}{3}$£¬´úÈëx0+y0=0µÃx1+2x2+y1+2y2=0£¬»¯¼ò£¬¼´¿ÉÇóʵÊýmµÄȡֵ·¶Î§£®
½â´ð ½â£º£¨1£©ÓÉÌâÒ⣺$\overrightarrow{{P}_{1}{P}_{2}}$=£¨3£¬-3£©¡£¨1·Ö£©
ÉèP0£¨x0£¬y0£©£¬ÓÉ$\overrightarrow{{P}_{1}{P}_{0}}$=$\frac{1}{2}$$\overrightarrow{{P}_{0}{P}_{2}}$£¬
¿ÉµÃ2£¨x0-0£©=3-x0£¬2£¨y0-3£©=0-y0£¬
ËùÒÔx0=1£¬y0=2£¬¡£¨3·Ö£©
ËùÒÔÖ±Ïßl£º3£¨x-1£©-3£¨y-2£©=0£¬
¼´ËùÇóÖ±Ïßl£ºx-y+1=0£» ¡£¨4·Ö£©
£¨2£©Ë«ÇúÏßx2-y2=1²»ÊÇΪ¡°¦Ë¶Ô³ÆÇúÏß¡±¡£¨6·Ö£©
ÊÂʵÉÏ£¬Ë«ÇúÏßx2-y2=1µÄÁ½Ìõ½¥½üÏß·Ö±ðΪx-y=0£¬x+y=0£¬ËüÃÇ»¥Ïà´¹Ö±£¬
Ö±Ïßl£ºx-y+1=0ÓëÆäÖн¥½üÏßx-y=0ƽÐУ¬
ËùÒÔË«ÇúÏßx2-y2=1Éϲ»¿ÉÄÜ´æÔÚÁ½µãP1£¬P2£¬¸ü±ð˵Âú×ã$\overrightarrow{{P_1}{P_0}}=¦Ë•\;\overrightarrow{{P_0}{P_2}}$ ¡£¨8·Ö£©
£¨3£©ÒòΪÅ×ÎïÏßy=x2-mΪ¡°2¶Ô³ÆÇúÏß¡±£¬ËùÒÔ´æÔÚµãP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬
ÉèÖ±ÏßP1P2£ºy=x+t£¬ÓÉ$\left\{{\begin{array}{l}{y=x+t}\\{y={x^2}-m}\end{array}}\right.$⇒x2-x-t-m=0
ÆäÖС÷=1-4£¨-t-m£©£¾0£¬ÇÒ$\left\{{\begin{array}{l}{{x_1}+{x_2}=1}\\{{x_1}{x_2}=-t-m}\end{array}}\right.$
ÓÖÓÉ$\overrightarrow{{P}_{1}{P}_{0}}$=2$\overrightarrow{{P}_{0}{P}_{2}}$£¬¿ÉµÃx0=$\frac{{x}_{1}+2{x}_{2}}{3}$£¬y0=$\frac{{y}_{1}+2{y}_{2}}{3}$
´úÈëx0+y0=0µÃx1+2x2+y1+2y2=0
ËùÒÔx1+xy2+£¨x1+t£©+2£¨x2+t£©=0$⇒{x_2}=-\frac{3}{2}t-1£¬{x_1}=2+\frac{3}{2}t$¡£¨12·Ö£©
ÓÉ¡÷=1-4£¨-t-m£©=1-4x1x2£¾0µÃ$1-4£¨-\frac{3t}{2}-1£©£¨2+\frac{3t}{2}£©£¾0$⇒t¡Ù-1¡£¨14·Ö£©
ÓÉx1x2=-t-mµÃm=-t-x1x2=$-t-£¨-\frac{3t}{2}-1£©£¨2+\frac{3t}{2}£©$=$\frac{9}{4}{t^2}+\frac{7}{2}t+2$=$\frac{9}{4}{£¨t+\frac{7}{9}£©^2}+\frac{23}{36}$¡Ê[$\frac{23}{36}$£¬+¡Þ£©£®
¼´ËùÇóʵÊýmµÄ·¶Î§Îª[$\frac{23}{36}$£¬+¡Þ£©£®¡£¨16·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éж¨Ò壬ֱÏßµÄÒ»°ãʽ·½³Ì£¬ÇóµãµÄ¹ì¼£·½³Ì£¬ÊôÓÚÖеµÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬1£© | B£® | £¨-¡Þ£¬2£© | C£® | [1£¬2£© | D£® | £¨1£¬2£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¼b£¼a | B£® | c£¼a£¼b | C£® | a£¼c£¼b | D£® | a£¼b£¼c |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com