精英家教网 > 高中数学 > 题目详情
4.设集合U={x|x是小于9的正整数},集合A={1,2,3},集合B={3,4,5,6},则A∩(∁UB)=(  )
A.{1,2,3}B.{1,2}C.{1,3}D.{2,3}

分析 列举出集合U中的元素确定出U,求出A与B补集的交集即可.

解答 解:∵U={x|x是小于9的正整数}={1,2,3,4,5,6,7,8},A={1,2,3},B={3,4,5,6},
∴∁UB={1,2,7,8},
则A∩(∁UB)={1,2}.
故选:B.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知tanφ=-$\sqrt{3}$,求sinφ,cosφ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在复数集中因式分解x4+3x2-10=(x$+\sqrt{2}$i)(x-$\sqrt{2}i$)(x+$\sqrt{5}$)(x-$\sqrt{5}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=xlnx与直线y=m交于A(x1,y1),B(x2,y2)两点.
(1)求m的取值范围;
(2)求证:0<x1x2<$\frac{1}{{e}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知关于x的不等式x2-(4a+2)x+3a2+2a<0(a>-1)的解集中恰好含有3个整数解,则a的取值范围是$\frac{1}{3}$≤a<$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设直线l:x+y+m=0,圆C:(x-2)2+(y-1)2=9的圆心为C,直线l与圆C交于A,B两点.
(1)若m=-2,求△ABC的面积;
(2)设直线AC、BC的斜率分别为k1,k2,若k1•k2=-2,试求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,在三棱锥A-BCD中,侧面ABC是一个等腰直角三角形,∠BAC=90°,底面BCD是一个等边三角形,平面ABC⊥平面BCD,E为BD的中点,则AE与平面BCD所成角的大小为45°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若${∫}_{1}^{2}$(x-a)dx=${∫}_{0}^{\frac{π}{4}}$cos2xdx,则a等于(  )
A.-1B.1C.2D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列关于函数y=tan(x+$\frac{π}{3}$)的说法正确的是(  )
A.在区间[-$\frac{π}{6}$,$\frac{5π}{6}$]上单调递增B.值域为[-1,1]
C.图象关于直线x=$\frac{π}{6}$成轴对称D.图象关于点(-$\frac{π}{3}$,0)成中心对称

查看答案和解析>>

同步练习册答案