精英家教网 > 高中数学 > 题目详情
圆x2+y2+2x+6y+9=0与圆x2+y2-6x+2y+1=0的位置关系是(  )
A、相交B、外切C、相离D、内切
考点:圆与圆的位置关系及其判定
专题:计算题,直线与圆
分析:把两圆的方程化为标准方程,分别找出圆心坐标和半径,利用两点间的距离公式,求出两圆心的距离d,然后求出R-r和R+r的值,判断d与R-r及R+r的大小关系即可得到两圆的位置关系.
解答: 解:把圆x2+y2+2x+6y+9=0与圆x2+y2-6x+2y+1=0的分别化为标准方程得:
(x+1)2+(y+3)2=1,(x-3)2+(y+1)2=9,
故圆心坐标分别为(-1,-3)和(3,-1),半径分别为r=1和R=3,
∵圆心之间的距离d=
(3+1)2+(-1+3)2
=2
5
,R+r=4,R-r=2,
4<2
5
,∴R+r<d,
则两圆的位置关系是相离.
故选:C.
点评:本题考查圆与圆的位置关系,位置关系分别是:当0≤d<R-r时,两圆内含;当d=R-r时,两圆内切;当R-r<d<R+r时,两圆相交;当d=R+r时,两圆外切;当d>R+r时,两圆外离(其中d表示两圆心间的距离,R,r分别表示两圆的半径).
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
1-2cosx
(x∈(0,2π)有意义,则x的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

经过点P(2,-3)作圆x2+2x+y2=24的弦AB,使得点P平分弦AB,则弦AB所在直线的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

平面上两点F1,F2满足|F1F2|=4,设d为实数,令D表示平面上满足||PF1|-|PF2||=d的所有P点组成的图形,又令C为平面上以F1为圆心、6为半径的圆.则下列结论中,其中正确的有
 
(写出所有正确结论的编号).
①当d=0时,D为直线;
②当d=1时,D为双曲线;
③当d=2时,D与圆C交于两点;
④当d=4时,D与圆C交于四点;
⑤当d=4时,D不存在.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=2px(p>0),过其焦点且斜率为1的直线交抛物线于A,B两点,若线段AB的中点的纵坐标为2,则该抛物线的标准方程为(  )
A、y2=-4x
B、y2=4x
C、x2=4y
D、x2=-4y

查看答案和解析>>

科目:高中数学 来源: 题型:

直线4x+3y=0与圆(x-1)2+(y-2)2=16的位置关系是(  )
A、相离B、相切
C、相交但不过圆心D、相交过圆心

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a2+b2=c2+
2
ba
,则∠C=(  )
A、30°B、150°
C、45°D、135°

查看答案和解析>>

科目:高中数学 来源: 题型:

若直线ax+by=4与⊙C:x2+y2=4无交点,则点P(a,b)与⊙C的位置关系是(  )
A、P在⊙C上B、P在⊙C内
C、P在⊙C外D、不确定

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,求满足下列条件的a,b 的值.
(1)l1⊥l2,且l1过点(-3,-1);  
(2)l1∥l2,且l1过(0,1).

查看答案和解析>>

同步练习册答案