分析 由数列的前n项和求出数列的通项,判断出数列{an}的前5项为正值,自第6项起为负值,然后分类求得数列{bn}的前n项和Tn.
解答 解:由Sn=10n-n2,得a1=9;
当n≥2时,${a}_{n}={S}_{n}-{S}_{n-1}=10n-{n}^{2}-[10(n-1)-(n-1)^{2}]$
=11-2n,
由an≥0,得11-2n≥0,∴n$≤\frac{11}{2}$,
∴数列{an}的前5项为正值,自第6项起为负值,
则当n≤5时,${T}_{n}={S}_{n}=10n-{n}^{2}$;
当n≥6时,Tn=(b1+b2+…+b5)-(b6+b7+…+bn)
=2(b1+b2+…+b5)-(b1+b2+…+bn)=2S5-Sn=n2-10n+50.
∴${T}_{n}=\left\{\begin{array}{l}{10n-{n}^{2},n≤5}\\{{n}^{2}-10n+50,n≥6}\end{array}\right.$.
点评 本题考查数列求和,考查了分类讨论的数学思想方法,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{5}{3}$或$\frac{5}{4}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{5}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 22016-1 | B. | 22016 | C. | 22016+1 | D. | 22016-2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1个 | B. | 2个 | C. | 3个 | D. | 4个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com