精英家教网 > 高中数学 > 题目详情
14.不等式$\frac{{{x^2}-9}}{x-2}≥0$的解集是(  )
A.{x|-3≤x≤3}B.{x|-3≤x≤2或x≥3}C.{x|-3≤x<2或x≥3}D.{x|x≤-3或2<x≤3}

分析 不等式$\frac{{{x^2}-9}}{x-2}≥0$,即为$\left\{\begin{array}{l}{{x}^{2}-9≥0}\\{x-2>0}\end{array}\right.$或$\left\{\begin{array}{l}{{x}^{2}-9≤0}\\{x-2<0}\end{array}\right.$,由二次不等式和一次不等式的解法,计算即可得到所求解集.

解答 解:不等式$\frac{{{x^2}-9}}{x-2}≥0$,
即为$\left\{\begin{array}{l}{{x}^{2}-9≥0}\\{x-2>0}\end{array}\right.$或$\left\{\begin{array}{l}{{x}^{2}-9≤0}\\{x-2<0}\end{array}\right.$,
即有$\left\{\begin{array}{l}{x≥3或x≤-3}\\{x>2}\end{array}\right.$或$\left\{\begin{array}{l}{-3≤x≤3}\\{x<2}\end{array}\right.$,
即为x≥3或-3≤x<2,
可得解集为{x|x≥3或-3≤x<2},
故选:C.

点评 本题考查分式不等式的解法,注意运用等价变形,转化为二次不等式和一次不等式的解法,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.为了得到$y=cos({\frac{1}{2}x+\frac{π}{6}})$的图象,只需将y=cos$\frac{1}{2}$x的图象(  )
A.向左平移$\frac{π}{6}$个单位长度B.向右平移$\frac{π}{6}$个单位长度
C.向左平移$\frac{π}{3}$个单位长度D.向右平移$\frac{π}{3}$个单位长度

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知椭圆$C:\frac{x^2}{16}+\frac{y^2}{8}=1$的左、右焦点分别为F1、F2,过点F1的直线l交椭圆C于A、B两点,则△ABF2的周长为16.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.过点(1,4)且与直线3x+2y=0平行的直线的方程为3x+2y-11=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.函数y=cos2x+sinx的值域为(  )
A.[-1,1]B.[1,$\frac{5}{4}$]C.[-1,$\frac{5}{4}$]D.[0,1]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知$\overrightarrow{a}$、$\overrightarrow{b}$为两个单位向量,则下列四个命题中正确的是(  )
A.$\overrightarrow{a}$=$\overrightarrow{b}$B.若$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$=$\overrightarrow{b}$C.$\overrightarrow{a}$=$\overrightarrow{b}$或$\overrightarrow{a}$=-$\overrightarrow{b}$D.若$\overrightarrow{a}$=$\overrightarrow{b}$,$\overrightarrow{b}$=$\overrightarrow{c}$,则$\overrightarrow{a}$=$\overrightarrow{c}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知cos(x+$\frac{π}{12}$)=-$\frac{5}{13}$,则cos(2x-$\frac{5π}{6}$)$\frac{119}{169}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.二项式(a+b)2n的展开式的项数是(  )
A.2nB.2n+1C.2n-1D.2(n+1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.传说古希腊毕达哥拉斯学派的数学家经常在沙滩上画点或用小石子表示数.他们研究过如图所示的三角形数:将三角形数1,3,6,10,…记为数列{an},将可被5整除的三角形数按从小到大的顺序组成一个新数列{bn},可以推测:b2017是数列{an}中的第5044项.

查看答案和解析>>

同步练习册答案