分析 (1)利用待定系数法即可求f(x)的解析式;(2)结合一元二次函数的性质进行求解即可.
解答 解:(1)∵f(x)是二次函数,不等式f(x)<0的解集是(0,5),
∴0,5是方程f(x)=0的两个根,且抛物线开口向上,
设f(x)=ax(x-5),a>0.
则对称轴为x=$\frac{5}{2}$,
∵f(x)在区间[-1,4]上的最大值是12,
∴当x=-1时,函数取得最大值,
此时f(-1)=6a=12,解得a=2.
则f(x)=2x(x-5).
(2)若对于x∈R,不等式f(x)>m恒成立,
即m<f(x)min,而f(x)=2x2-10x=2${(x-\frac{5}{2})}^{2}$-$\frac{25}{4}$,
f(x)的最小值是-$\frac{25}{4}$,
故m<-$\frac{25}{4}$.
点评 本题主要考查一元二次函数解析式的求解,以及一元二次函数最值的求解,利用待定系数法是解决本题的关键.
科目:高中数学 来源: 题型:选择题
| A. | ?x∈R,都有x2-3x+1≤0 | B. | ?x∈R,都有x2-3x+1<0 | ||
| C. | ?x0∈R,使得x02-3x0+1≤0 | D. | ?x0∈R,使得x02-3x0+1<0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -4750 | B. | 4850 | C. | -5000 | D. | 4750 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2x<3y<5z | B. | 3y<2x<5z | C. | 5z<3y<2x | D. | 5z<2x<3y |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com