精英家教网 > 高中数学 > 题目详情
5.已知曲线C的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=-2$\sqrt{2}$.
(1)写出曲线C的普通方程和直线l的直角坐标方程;
(2)设点P为曲线C上的动点,求点P到直线l距离的最大值.

分析 (1)曲线C的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$,利用cos2θ+sin2θ=1即可化为普通方程,直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=-2$\sqrt{2}$,展开为:$\frac{\sqrt{2}}{2}ρ$(sinθ+cosθ)=-2$\sqrt{2}$,利用$\left\{\begin{array}{l}{x=ρcosθ}\\{y=ρsinθ}\end{array}\right.$即可化为直角坐标方程.
(2)利用点到直线的距离公式可得:圆心(2,0)到直线l的距离d,即可得出点P到直线l距离的最大值是r+d.

解答 解:(1)曲线C的参数方程为$\left\{\begin{array}{l}{x=2+2cosθ}\\{y=2sinθ}\end{array}\right.$,化为(x-2)2+y2=4,
直线l的极坐标方程为ρsin(θ+$\frac{π}{4}$)=-2$\sqrt{2}$,展开为:$\frac{\sqrt{2}}{2}ρ$(sinθ+cosθ)=-2$\sqrt{2}$,化为x+y+4=0.
(2)圆心(2,0)到直线l的距离d=$\frac{|2+0+4|}{\sqrt{2}}$=3$\sqrt{2}$,
∴点P到直线l距离的最大值是2+3$\sqrt{2}$.

点评 本题考查了参数方程化为普通方程、极坐标方程化为直角坐标方程、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.已知f(x)=log2(4-ax)在区间[-1,3]上是增函数,则a的取值范围是-4<a<0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知$f(x)=\frac{ax+2}{{{x^2}+1}}$为R上的偶函数.
(Ⅰ)求实数a的值;
(Ⅱ)判断函数f(x)在[0,+∞)上的单调性,并利用定义证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.过点P(2,3),并且在两轴上的截距互为相反数的直线方程为(  )
A.x-y+1=0或3x-2y=0B.x-y+1=0
C.x+y-5=0或3x-2y=0D.x+y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.抛物线y2+4x=0上的一点P到直线x=3的距离等于5,则P到焦点F的距离|PF|=(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知二次函数f(x)=$\frac{1}{2}$(a-1)x2+(b-4)x+1,其中a>0,b>0.
(1)当a=3,b=8时,求不等式f(x)≤0的解集;
(2)若函数f(x)在区间[$\frac{1}{2}$,2]上单调递减,求ab的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知A、B、C三点在球O的球面上,AB=BC=CA=3,且球心O到平面ABC的距离等于球半径的$\frac{1}{3}$,则球O的表面积为(  )
A.12πB.16πC.18πD.$\frac{27π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.下列函数是奇函数的是(  )
A.y=xsinxB.y=x2cosxC.y=$\frac{sinx}{x}$D.y=$\frac{cosx}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.记max{a,b}表示a,b中较大的数,则函数f(x)=x•max{-$\frac{lnx}{ln2}$,4x2}(x>0)的递增区间为(  )
A.(0,e)B.(0,$\frac{1}{e}$)C.(0,$\frac{1}{e}$),($\frac{1}{2}$,+∞)D.(0,$\frac{1}{2}$),(e,+∞)

查看答案和解析>>

同步练习册答案