精英家教网 > 高中数学 > 题目详情
20.同样规格的黑、白两色正方形瓷砖铺设的若干图案,则按此规律第n个图案中需用黑色瓷砖4n+8块(用含n的代数式表示

分析 本题通过观察前几个图案的规律进行归纳,在归纳时要抓住每个情况中反映的数量关系与序号之间的关系再进行概括.

解答 解:根据题目给出的图,我们可以看出:
1图中有黑色瓷砖12块,我们把12可以改写为3×4;
2图中有黑色瓷砖16块,我们把16可以改写为4×4;
3图中有黑色瓷砖20块,我们把20可以改写为5×4;
从具体中,我们要抽象出瓷砖的块数与图形的个数之间的关系,就需要对3、4、5这几个数字进行进一步的变形,用序列号1、2、3来表示,这样12,我们又可以写为12=(1+2)×4,16又可以写为16=(2+2)×4,20我们又可以写为20=(3+2)×4,注意到1、2、3恰好是图形的序列号,而2、4在图中都是确定的,
因此,我们可以从图中概括出第n个图有(n+2)×4,也就是,有4n+8块黑色的瓷砖.
故答案为:4n+8.

点评 本题考查归纳推理,在处理这类问题时,我们要注意:从具体的、个别的情况分析起,从中进行归纳.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:x2-$\frac{{y}^{2}}{4}$=1有公共的焦点,C2的一条渐近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则b=$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知向量$\overrightarrow{a}$=(sinx,sinx),$\overrightarrow{b}$=(cosx,sinx),函数f(x)=2$\overrightarrow{a}$•$\overrightarrow{b}$(x∈R)
(1)求函数f(x)的最小正周期及x∈[0,$\frac{π}{2}$]上的最值;
(2)若关于x的方程f(x)=m在区间[0,$\frac{π}{2}$]上只有一个实根,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某班组织文艺晚会,准备从A,B等7个节目中选出3个节目演出,要求:A,B两个节目至少有一个选中,且A,B同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的和数为(  )
A.84B.72C.76D.130

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在二项式(x-$\frac{1}{2\root{3}{x}}$)n的展开式中,前三项系数的绝对值成等差数列.
(Ⅰ)求展开式中二项式系数最大的项的系数;
(Ⅱ)设(x-$\frac{1}{2\root{3}{x}}$)n展开式中的常数项为p,展开式中所有项系数的和为q,求p+q.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在一个2×2列联表中,由其数据计算得到K2的观测值k=12.097,则其两个变量间有关系的可能性为(  )
A.0B.95%C.90%D.99.9%

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.制造一种零件,甲机床的正品率为0.90,乙机床的正品率为0.80,分别从它们制造的产品中任意抽取一件,求:
(1)两件都是正品的概率;
(2)两件都是次品的概率;
(3)恰有一件正品的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知三个点A(2,1)、B(3,2)、D(-1,4).
(Ⅰ)求证:$\overrightarrow{AB}⊥\overrightarrow{AD}$;
(Ⅱ)要使四边形ABCD为矩形,求点C的坐标,并求矩形ABCD两对角线所夹锐角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)是定义在R上的奇函数,f(2)=0,当x>0时,有$\frac{xf'(x)-f(x)}{x^2}<0$成立,则不等式f(x)>0的解集是(-∞,-2)∪(0,2).

查看答案和解析>>

同步练习册答案