精英家教网 > 高中数学 > 题目详情
8.(1)解不等式:|2x-2|<|x-4|;
(2)记(1)中不等式的解集为A,当a,b∈A时,证明:2|a+b|<|4+ab|

分析 (1)不等式|2x-2|<|x-4|,即 (2x-2)2<(x-4)2,由此求得不等式的解集.
(2)由题意可得-2<a<2,-2<b<2,用比较法证得|4+ab|2-(2|a+b|)2>0,可得不等式 2|a+b|<|4+ab|成立.

解答 解:(1)不等式:|2x-2|<|x-4|,即 (2x-2)2<(x-4)2,即 3x2<12,
求得-2<x<2,故不等式的解集为(-2,2).
(2)记(1)中不等式的解集为A,当a,b∈A时,有-2<a<2,-2<b<2.
∵|4+ab|2-(2|a+b|)2=16+8ab+a2•b2-4(a2+2ab+b2
=16+a2•b2-4a2-4b2=4(4-b2)+a2(b2-4)=(4-b2)(4-a2)>0,
∴|4+ab|>2|a+b|,即 不等式 2|a+b|<|4+ab|成立.

点评 本题考查绝对值函数,考查解不等式,考查不等式的证明,解题的关键是将不等式写成分段函数,利用作差法证明不等式,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.直线$\left\{\begin{array}{l}x=1+2t\\ y=2+t\end{array}\right.$(t为参数)被圆x2+y2=4截得的弦长等于(  )
A.$\frac{{2\sqrt{55}}}{5}$B.$\frac{22}{5}$C.$\frac{{2\sqrt{11}}}{5}$D.$\frac{{22\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}满足a1=a2=2,2nan+1-(3n+2)an+(n+1)an-1=0(n≥2),求a2009的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知集合A={x|4≤x<8,x∈R},B={x|6<x<9,x∈R},C={x|x>a,x∈R}.
(1)求A∪B;
(2)(∁UA)∩B;    
(3)若A∩C=∅,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知抛物线y2=4x的焦点为F,O为坐标原点,M为抛物线上一点且|MF|=3,则△OMF的面积为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知直线l:x+y=b交抛物线C:y2=2px(b>p>0)于A、B两点,O为坐标原点,且$\overrightarrow{OA}•\overrightarrow{OB}$=8,C的焦点F到直线1的距离为$\frac{7\sqrt{2}}{4}$.
(1)求抛物线C的方程;
(2)求△OAB外接圆的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在四棱锥P-ABCD中,PD⊥底面ABCD,ABCD为正方形,且PD=AB=1,G为△ABC的重心,则PG与底面所成的角θ满足(  )
A.θ=$\frac{π}{4}$B.cosθ=$\frac{2\sqrt{34}}{17}$C.tanθ=$\frac{2\sqrt{2}}{3}$D.sinθ=$\frac{\sqrt{3}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数y=2sin(3x-$\frac{π}{4}$),x∈[0,$\frac{π}{2}$]的最值,并说明取得最值时x的取值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.求函数y=($\frac{1}{2}$)${\;}^{{x}^{2}-2x}$的单调递增区间和单调递减区间.

查看答案和解析>>

同步练习册答案