精英家教网 > 高中数学 > 题目详情
7.某工厂生产A、B、C三种不同型号的产品,某月生产产品数量之比依次为m:3:2,现用分层抽样方法抽取一个容量为120的样本,已知A种型号产品抽取了45件,则C种型号产品抽取的件数为(  )
A.20B.30C.40D.45

分析 先求出B、C两种型号的产品共抽取:120-45=75,由此利用分层抽栏的性质能求出C种型号产品抽取的件数.

解答 解:∵分层抽样方法抽取一个容量为120的样本,A种型号产品抽取了45件,
∴B、C两种型号的产品共抽取:120-45=75,
∵某工厂生产A、B、C三种不同型号的产品,某月生产产品数量之比依次为m:3:2,
∴C种型号产品抽取的件数为:75×$\frac{2}{3+2}$=30.
故选:B.

点评 本题考查分层抽样的应用,是基础题,解题时要认真审题,注意分层抽样性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.若随机变量ξ服从正态分布N(μ,σ2),P(μ-σ<ξ<μ+σ)=0.6826,P(μ-2σ<ξ<μ+2σ)=0.9544,设ξ~N(1,σ2),且P(ξ≥3)=0.1587,在平面直角坐标系xOy中,若圆x2+y22上有四个点到直线12x-5y+c=0的距离为1,则实数c的取值范围是(-13,13).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=\frac{{{x^2}-1}}{{lnx-a{x^2}}}(a∈$R).
(1)当a=0时,求函数 f(x)的单调区间;
(2)若对于任意x∈(1,e),不等式f(x)>1恒成立,求 a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知点P是椭圆$\frac{x^2}{8}+\frac{y^2}{4}=1$在第一象限上的动点,过点P引圆x2+y2=4的两条切线PA、PB,切点分别是A、B,直线AB与x轴、y轴分别交于点M、N,则△OMN面积的最小值为$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.三国时代吴国数学家赵爽所著《周髀算经》中用赵爽弦图给出了勾股定理的绝妙证明,如图是赵爽弦图,图中包含四个全等的勾股形及一个小正方形,分别涂成朱色和黄色,若朱色的勾股形中较大的锐角α为$\frac{π}{3}$,现向该赵爽弦图中随机地投掷一枚飞镖,则飞镖落在黄色的小正方形内的概率为1-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.若函数$f(x)=\left\{\begin{array}{l}{x^2}+\frac{2}{x},x>0\\ a{x^2}+\frac{b}{x},x<0\end{array}\right.$是奇函数,则f(a-b)=-$\frac{29}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如果x,y满足$\left\{\begin{array}{l}{x-2y-4≤0}\\{x+y-1≥0}\\{2x-y-2≥0}\end{array}\right.$,则z=$\frac{y+1}{x+1}$的取值范围是(  )
A.[0,2)B.[0,2]C.[-1,$\frac{1}{2}$]D.[0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某农科所发现,一中作物的年收获量y(单位:kg)与它”相近“作物的株数x具有线性相关关系(所谓两株作物”相近“是指它们的直线距离不超过1m),并分别记录了相近作物的株数为1,2,3,5,6,7时,该作物的年收获量的相关数据如下:
X123567
y605553464541
(Ⅰ)求该作物的年收获量y关于它”相近“作物的株数x的线性回归方程;
(Ⅱ)农科所在如图所示的正方形地块的每个格点(指纵、横直线的交叉点)处都种了一株该作物,其中每一个小正方形的面积为1,若在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.(注:年收获量以线性回归方程计算所得数据为依据)
附:对于一组数据(x1,y1),(x2,y2),…,(xn,yn),其回归直线y=a+bx的斜率和截距的最小二乘估计分别为$\widehat{b}$=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n•{\overline{x}}^{2}}$,$\widehat{a}$=$\overline{y}$-$\widehat{b}$$\overline{x}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.直线l:x+λy+2-3λ=0(λ∈R)恒过定点(-2,3),P(1,1)到该直线的距离最大值为$\sqrt{13}$.

查看答案和解析>>

同步练习册答案