精英家教网 > 高中数学 > 题目详情
某物流公司运费计算框图如图所示,其中d为按运送里程给运费打的折扣,n为运送物品的件数.现有顾客办理A、B两件物品递送,其中A物品运送单价为p1=0.02元/千克•千米,重量为w1=5千克,运送里程为s1=250千米;B物品运送单价为p2=0.03元/千克•千米,重量为w2=6千克,运送里程为s2=500千米.则按运费计算框图算出该顾客应付运费sum=(  )
A、94.5元B、97元
C、103.5元D、106元
考点:程序框图
专题:算法和程序框图
分析:由已知中的程序框图可得,该程序的功能是某物流公司运费计算程序,根据已知中物品的运送里程,重量,运送单价及程序中相应的折扣,分别计算出运送费用,相加可得答案.
解答: 解:由已知中的程序框图可得,该程序的功能是某物流公司运费计算程序,
∵A物品运送单价为p1=0.02元/千克•千米,重量为w1=5千克,运送里程为s1=250千米;
此时f=0.02×5×250×(1-0.1)=22.5,
又∵B物品运送单价为p2=0.03元/千克•千米,重量为w2=6千克,运送里程为s2=500千米.
此时f=0.03×6×500×(1-0.2)=72,
故sum=22.5+72=94.5,
故选:A
点评:本题考查的知识点是程序框图,其中分析出程序的功能是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某校男女篮球队各有10名队员,现将这20名队员的身高绘制成如图所示茎叶图(单位:cm).男队员身高在180cm以上定义为“高个子”,女队员身高在170cm以上定义为“高个子”,其他队员定义为“非高个子”.用分层抽样的方法,从“高个子”和“非高个子”中共抽取5名队员.
(Ⅰ)从这5名队员中随机选出2名队员,求这2名队员中有“高个子”的概率;
(Ⅱ)求这5名队员中,恰好男女“高个子”各1名队员的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,圆柱的轴截面ABCD是正方形,点E在底面的圆周上,BF⊥AE,F是垂足.
(1)求证:BF⊥AC;
(2)若CE=1,∠CBE=30°,求三棱锥F-BCE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,三内角A,B,C的对边分别为a,b,c,面积为S,若S+a2=(b+c)2,则cosA等于(  )
A、
4
5
B、-
4
5
C、
15
17
D、-
15
17

查看答案和解析>>

科目:高中数学 来源: 题型:

某程序框图如图所示,若该程序运行后输出的值是
7
4
,则(  )
A、a=3B、a=4
C、a=5D、a=6

查看答案和解析>>

科目:高中数学 来源: 题型:

以坐标原点为极点,x的正半轴为极轴建立极坐标系,极坐标方程为ρ=4cosθ的曲线与参数方程
x=-2014-t
y=2015+t
(t为参数)的直线交于A、B,则|AB|=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设不等式组
x-2y+2≥0
x≤4
y≥-2
表示的平面区域为D,则区域D的面积为(  )
A、10B、15C、20D、25

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,已知a=3,b=2,C=
π
3
,求c和∠B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=cosx(sinx+cosx)+ksin(x+
π
4
)sin(x-
π
4
).
(1)当k=2时,求函数f(x)在区间(0,
π
2
)内的值域;
(2)tanα=
1
2
时,f(α)=
3
2
,求k的值.

查看答案和解析>>

同步练习册答案