精英家教网 > 高中数学 > 题目详情
在数列{an}中,设S0=0,Sn=a1+a2+a3+…+an,其中ak=
k,Sk-1<k
-k,Sk-1≥k
,1≤k≤n,k,n∈N*,当n≤14时,使Sn=0的n的最大值为
 
考点:数列的求和,数列的函数特性
专题:等差数列与等比数列
分析:由S1-1=S0=0<1,得a1=1,由S2-1=S1=1<2,得a2=2,由S3-1=S2=1+3=3,得a3=-3,同理,a4=4,a5=5,a6=-6,a7=7,a8=-8,a9=9,a10=-10,a11=11,a12=-12,a13=13,a14=14,由此能求出结果.
解答: 解:∵数列{an}中,设S0=0,Sn=a1+a2+a3+…+an
ak=
k,Sk-1<k
-k,Sk-1≥k
,1≤k≤n,k,n∈N*
∵S1-1=S0=0<1,
∴a1=1,
∵S2-1=S1=1<2,
∴a2=2,
∵S3-1=S2=1+3=3,
∴a3=-3,
同理,a4=4,a5=5,a6=-6,a7=7,a8=-8,
a9=9,a10=-10,a11=11,a12=-12,a13=13,a14=14,
∵n≤14,
S12=1+2+(-3)+4+5+(-6)+7+(-8)+9+(-10)+11+(-12)=0,
∴Sn=0的n的最大值为12.
故答案为:12.
点评:本题考查使数列的前n项和为0时,项数n的最大值的求法,解题时要认真审题,注意递推公式的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知椭圆C:
x2
4
+
y2
3
=1,直线l的方程为x=4,过右焦点F的直线l′与椭圆交于异于左顶点A的P,Q两点,直线AP,AQ交直线l分别于点M,N.
(Ⅰ)当
AP
AQ
=
9
2
时,求此时直线l′的方程;
(Ⅱ)试问M,N两点的纵坐标之积是否为定值?若是,求出该定值;若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+a且f(-1)=0,则f-1(1)=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用1、2、3、4、5、6六个数组成没有重复数字的六位数,其中5、6均排在3的同侧,这样的六位数共有
 
个(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知变量x,y满足约束条件
1≤x+y≤4
-2≤x-y≤2
,则目标函数z=
y+3
x+4
的最大值为
 
,最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知过点(1,1)的直线l与圆x2+y2-4y+2=0相切,则直线l的方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,曲线C1:ρ=cosθ与C2:ρ=a(a>0)只有一个交点,则a=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A,B,C所对应的变分别为a,b,c,则“A≤B“是“sinA≤sinB“的(  )条件.
A、充分必要
B、必要不充分
C、充分不必要
D、既不充分也不必要

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别是F1、F2过F2垂直x轴的直线与双曲线C的两渐近线的交点分别是M、N,若△MF1N为正三角形,则该双曲线的离心率为(  )
A、
21
3
B、
3
C、
13
D、2+
3

查看答案和解析>>

同步练习册答案