精英家教网 > 高中数学 > 题目详情
1.下列函数中,哪个函数在其定义域内是单调有界函数(  )
A.f(x)=$\sqrt{x}$B.f(x)=2xC.f(x)=sinxD.f(x)=arctanx

分析 分别判断函数胡的单调性和值域即可判断.

解答 解:f(x)=$\sqrt{x}$在[0,+∞)上单调递增,且值域为[0,+∞)
f(x)=2x在R上单调递增,且值域为(0,+∞),
f(x)=sinx在R上不单调,
f(x)=arctanx在R上为单调函数,且值域(-$\frac{π}{2}$,$\frac{π}{2}$),
故选:D

点评 本题考查了函数的单调性和函数的值域,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.若z=(2+i)cosπ(i为虚数单位),则z=(  )
A.2+iB.$\frac{2-i}{5}$C.$\frac{2-i}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知平面向量$\vec a=({1,2}),\vec b=({-2,m})$,且$\vec a∥\vec b$,则$|{\vec b}|$为(  )
A.2$\sqrt{5}$B.$\sqrt{5}$C.3$\sqrt{5}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义:$|{\begin{array}{l}a&b\\ c&d\end{array}}|=ad-bc$,如$|{\begin{array}{l}1&2\\ 3&4\end{array}}|=1×4-2×3=-2$,则$|{\begin{array}{l}{\int_1^2{xdx}}&3\\ 1&2\end{array}}|$=(  )
A.0B.$\frac{3}{2}$C.3D.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.数列{an}满足an+5an+1=36n+18,n∈N*,且a1=4.
(1)写出{an}的前3项,并猜想其通项公式;
(2)用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.若x、y满足条件$\left\{\begin{array}{l}{2x+y-12≤0}\\{3x-2y+10≥0}\\{x-4y+10≤0}\end{array}\right.$,求z=x+2y的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若定义在(0,1)上的函数f(x)满足:f(x)>0且对任意的x∈(0,1),有f($\frac{2x}{1+{x}^{2}}$)=2f(x).则(  )
A.对任意的正数M,存在x∈(0,1),使f(x)≥M
B.存在正数M,对任意的x∈(0,1),使f(x)≤M
C.对任意的x1,x2∈(0,1)且x1<x2,有f(x1)<f(x2
D.对任意的x1,x2∈(0,1)且x1<x2,有f(x1)>f(x2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若a和b是计算机在区间(0,3)上产生的随机数,那么函数f(x)=lg(ax2+4x+4b) 的值域为R的概率为$\frac{1+2ln3}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在区间[0,1]上随机取两个数x和y,则$y≥|{x-\frac{1}{2}}|$的概率为(  )
A.$\frac{1}{6}$B.$\frac{2}{5}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

同步练习册答案