精英家教网 > 高中数学 > 题目详情
17.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2);
②f(x1•x2)=f(x1)+f(x2);
③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$;
④$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}$
当f(x)=${({\frac{1}{2}})^x}$时,上述结论中正确的序号是①④.

分析 根据指数函数的性质知①②两个式子中①正确,由③可以判断函数是一个增函数,故③不正确,④表示函数是一个上凹函数,符合底数小于1的指数函数的性质.

解答 ①④解:∵$f(x)=(\frac{1}{2})^{x}$,
∴根据指数函数的性质知①②两个式子中①正确,
由③可以判断函数是一个增函数,故③不正确,
④表示函数是一个上凹函数,符合底数小于1的指数函数的性质,
故①④两个正确,
故答案为①④.

点评 本题考查底数小于1的指数函数的性质和图象,本题解题的关键是理解指数函数的性质并且熟练掌握它的图象的变化特点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.以点A(-1,3)为圆心,且与圆(x-3)2+y2=9外切的圆的方程为(x+1)2+(y-3)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow{b}$,点D满足$\overrightarrow{BD}$+2$\overrightarrow{CD}$=$\overrightarrow{0}$,则$\overrightarrow{AD}$=(  )
A.$\frac{2}{3}$$\overrightarrow{a}$+$\frac{1}{3}$$\overrightarrow{b}$B.-$\frac{2}{3}$$\overrightarrow{a}$+$\frac{5}{3}$$\overrightarrow{b}$C.$\frac{2}{3}$$\overrightarrow{a}$-$\frac{1}{3}$$\overrightarrow{b}$D.$\frac{1}{3}$$\overrightarrow{a}$+$\frac{2}{3}$$\overrightarrow{b}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)化简$\frac{{\sqrt{1-2sin{{40}°}cos{{40}°}}}}{{sin{{40}°}-\sqrt{1-{{sin}^2}{{40}°}}}}$;    
(2)求证:$\frac{1+sin2α}{cos2α}=\frac{1+tanα}{1-tanα}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f (x)的图象在M(1,f (1))处的切线方程为$y=\frac{1}{2}x+2$,则f(1)+f′(1)=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.在等比数列{an}中,若公比q=4,且第3项为16,则该数列的通项公式an=4n-1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.在△ABC中,角A、B、C所对的边分别为a、b、c,且acosC+$\frac{1}{2}$c=b.
(1)求角A的大小
(2)若a=$\sqrt{13}$,b=4,求边c的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.宁德至福州铁路里程约为100km,和谐号动车从宁德站出发,前2分钟内变速运行,其速度v(米/分钟)关于时间t(分钟)满足函数关系:v(t)=at3+bt2+ct+d,且v'(0)=v'(2)=0,之后匀速行驶24分钟,再减速行驶5km至终点(福州站).
(Ⅰ)求:前2分钟速度v(t)的函数关系式;
(Ⅱ)求动车运行过程中速度的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.用数字1,2,3可以写出6个无重复数字的三位正整数.

查看答案和解析>>

同步练习册答案