精英家教网 > 高中数学 > 题目详情
7.以点A(-1,3)为圆心,且与圆(x-3)2+y2=9外切的圆的方程为(x+1)2+(y-3)2=4.

分析 求出所求圆的半径,然后求出所求圆的标准方程即可.

解答 解:因为以点A(-1,3)为圆心,且与圆(x-3)2+y2=9相外切,
所以,设所求圆的半径为r,所以$\sqrt{(3+1)^{2}+{3}^{2}}$=r+3,所以r=2,
所以所求圆的标准方程为:(x+1)2+(y-3)2=4.
故答案为:(x+1)2+(y-3)2=4.

点评 本题考查圆与圆的位置关系及其判定,圆的标准方程的求法,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.解方程组:$\left\{\begin{array}{l}{{x}_{1}{-x}_{2}{+x}_{3}-{2x}_{4}=2}\\{{2x}_{1}{-x}_{3}+{4x}_{4}=4}\\{{3x}_{1}+{2x}_{2}{+x}_{3}=-1}\\{{-x}_{1}+{2x}_{2}{-x}_{3}+{2x}_{4}=-4}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设点P(x,y),则“x=2且y=-1”是“点P在圆(x-2)2+y2=1上”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设等差数列{an}的前n项和Sn=2n2,在数列{bn}中,b1=1,bn+1=3bn(n∈N*
(1)求数列{an}和{bn}的通项公式;
(2)设Cn=anbn,求证数列{cn}前n项和为Tn=(2n-2)3n+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.抛物线$y=\frac{1}{m}{x^2}$的焦点坐标为$(0,\frac{m}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.sin420°=$\frac{{\sqrt{3}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在钝角△ABC中,∠B>90°,a=2x-5,b=x+1,c=4,则x的取值范围是$\frac{10}{3}$<x<4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.从一箱产品中随机地抽取一件,设事件A={抽到一等品},事件B={抽到二等品},事件C={抽到三等品},且已知P(A)=0.65,P(B)=0.2,P(C)=0.1,则事件“抽到的不是一等品”的概率为(  )
A.0.7B.0.65C.0.35D.0.5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:
①f(x1+x2)=f(x1)f(x2);
②f(x1•x2)=f(x1)+f(x2);
③$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>0$;
④$f(\frac{{{x_1}+{x_2}}}{2})<\frac{{f({x_1})+f({x_2})}}{2}$
当f(x)=${({\frac{1}{2}})^x}$时,上述结论中正确的序号是①④.

查看答案和解析>>

同步练习册答案