精英家教网 > 高中数学 > 题目详情
15.设等差数列{an}的前n项和Sn=2n2,在数列{bn}中,b1=1,bn+1=3bn(n∈N*
(1)求数列{an}和{bn}的通项公式;
(2)设Cn=anbn,求证数列{cn}前n项和为Tn=(2n-2)3n+2.

分析 (1)等差数列{an}的前n项和Sn=2n2,可得a1=S1=2,当n≥2时,an=Sn-Sn-1,即可得出an,由数列{bn}中,b1=1,bn+1=3bn(n∈N*),利用等比数列的通项公式即可得出.
(2)Cn=anbn=(4n-2)•3n-1,利用“错位相减法”、等比数列的前n项和公式即可得出.

解答 (1)解:∵等差数列{an}的前n项和Sn=2n2
∴a1=S1=2,
当n≥2时,an=Sn-Sn-1=2n2-2(n-1)2=4n-2,
当n=1时上式成立,∴an=4n-2.
∵数列{bn}中,b1=1,bn+1=3bn(n∈N*),
∴数列{bn}是等比数列,首项为1,公比为3,
∴bn=3n-1
(2)证明:Cn=anbn=(4n-2)•3n-1
∴数列{cn}前n项和为Tn=2+6×3+10×32+…+(4n-2)•3n-1
3Tn=2×3+6×32+…+(4n-6)•3n-1+(4n-2)×3n
∴-2Tn=2+4×3+4×32+…+4×3n-1-(4n-2)×3n=$4×\frac{{3}^{n}-1}{3-1}$-2-(4n-2)×3n=(4-4n)×3n-4,
∴Tn=(2n-2)×3n+2.

点评 本题考查了“错位相减法”、等差数列与等比数列的通项公式及其前n项和公式、递推式的应用,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.用符号“∈”或“∉”填空.
(1)2a2-8a+9(a∈Z)∈{x|x=2n2+1,n∈Z}
(2)设集合M={x|x=3m+1,m∈Z},N={y|y=3n+2,n∈Z},若x0∈M,y0∈N,则x0y0∉M,x0y0∈N.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.为防止某种疾病,今研制一种新的预防药.任选取100只小白鼠作试验,得到如下的列联表:
患病未患病总计
服用药154055
没服用药202545
总计3565100
经计算得K2的观测值为3.2079,则在犯错误的概率不超过(  )的前提下认为“药物对防止某种疾病有效”.参考数据:
P(K2≥k)0.500.400.250.150.100.050.0250.0100.0050.001
k0.4550.7081.3232.0722.7063.8415.0246.6357.87910.828
A.0.025B.0.10C.0.01D.0.05

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知F1,F2分别是双曲线$\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{5}$=1的左、右焦点,A是双曲线左支上异于顶点的一动点,圆C为△AF1F2的内切圆,若M(x,0)是其中的一个切点,则(  )
A.x>-3B.x<-3
C.x=-3D.x与-3的大小不确定

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知向量$\overrightarrow{m}$=(1,1),$\overrightarrow{n}$与$\overrightarrow{m}$的夹角为$\frac{3π}{4}$,且$\overrightarrow{m}$•$\overrightarrow{n}$=-1,则向量$\overrightarrow{n}$=(  )
A.(-1,0)B.(0,-1)C.(-1,0)或(0,-1)D.(-1,-1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,M为棱BB1的中点,则下列结论中正确的是(  ) 
①D1O∥平面A1BC1
②D1O⊥平面MAC
③BC1异面直线与AC所成的角等于60°
④二面角M-AC-B等于60°.
A.①②B.①②③C.②③D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.以点A(-1,3)为圆心,且与圆(x-3)2+y2=9外切的圆的方程为(x+1)2+(y-3)2=4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知圆M:(x-1)2+(y-1)2=4,直线l:x+y-6=0,A为直线l上一点.
(1)若AM⊥l,过A作圆M的两条切线,切点分别为P,Q,求∠PAQ的大小;
(2)若圆M上存在两点B,C,使得∠BAC=60°,求点A横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.(1)化简$\frac{{\sqrt{1-2sin{{40}°}cos{{40}°}}}}{{sin{{40}°}-\sqrt{1-{{sin}^2}{{40}°}}}}$;    
(2)求证:$\frac{1+sin2α}{cos2α}=\frac{1+tanα}{1-tanα}$.

查看答案和解析>>

同步练习册答案