精英家教网 > 高中数学 > 题目详情
已知数列{an}是等差数列,数列{bn}是公比大于零的等比数列,且a1=b1=2,a3=b3=8.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)记cn=abn,求数列{cn}的前n项和Sn
考点:等差数列与等比数列的综合
专题:等差数列与等比数列
分析:(Ⅰ)设出等差数列{an}的公差为d,等比数列{bn}的公比为q,且q>0.由已知列式求得等差数列的公差和等比数列的公比,代入等差数列和等比数列的通项公式得答案;
(Ⅱ)由cn=abn结合数列{an}和{bn}的通项公式得到数列{cn}的通项公式,结合等比数列的前n项和求得数列{cn}的前n项和Sn
解答: 解:(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q,且q>0.
由a1=2,a3=8,得8=2+2d,解得d=3.
∴an=2+(n-1)×3=3n-1,n∈N*
由b1=2,b3=8,得8=2q2,又q>0,解得q=2.
bn=2×2n-1=2n,n∈N*
(Ⅱ)∵cn=abn=3×2n-1
Sn=3×
2(1-2n)
1-2
-n
=3×2n+1-n-6.
点评:本题考查了等差数列与等比数列的通项公式,考查了等比数列的前n项和,是中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知不等式
3x2+px+6
x2-x+1
≤6对?x∈R恒成立,则实数p的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x2-2ax+2,当x0∈[1,+∞)时,恒有f(x0)>0,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

某几何体三视图如图所示,其中三角形的三边长与圆的直径均为2,则该几何体体积为(  )
A、
32+8
3
3
π
B、
32+
3
3
π
C、
4+3
3
3
π
D、
4+
3
3
π

查看答案和解析>>

科目:高中数学 来源: 题型:

平行四边形ABCD中,∠CBA=120°,AD=4,对角线BD=2
3
,将其沿对角线BD折起,使平面ABD⊥平面BCD,若四面体ABCD顶点在同一个球面上,则该球的体积为(  )
A、
20
3
5
π
B、
160
3
5
π
C、32
3
π
D、2π

查看答案和解析>>

科目:高中数学 来源: 题型:

设定义域为(0,+∞)的单调函数f(x),对任意的x∈(0,+∞),都有f[f(x)-lnx]=e+1,若x0是方程f(x)-f′(x)=e的一个解,则x0可能存在的区间是(  )
A、(0,1)
B、(e-1,1)
C、(0,e-1
D、(1,e)

查看答案和解析>>

科目:高中数学 来源: 题型:

设数列{an}的前n项和为Sn,且Sn=-2n2+4n,数列{bn}为单调递增的等比数列,b1b2b3=27,a1+b1=a3+b3
(1)求数列{an}、{bn}的通项公式;
(2)设cn=a2n+b2n,求数列{cn}的前n项的和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

讨论二次函数y=ax2+bx+c(a>0)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知锐角△ABC的内角A、B、C的对边分别为a、b、c,若a=4,b=5,且面积S=5
3
,求边c的长度.

查看答案和解析>>

同步练习册答案