分析 由已知当x>0时总有xf′(x)-f(x)>0成立,可判断函数g(x)为增函数,由已知f(x)是定义在R上的奇函数,可证明g(x)为(-∞,0)∪(0,+∞)上的偶函数,根据函数g(x)在(0,+∞)上的单调性和奇偶性,而不等式f(x)>0等价于xg(x)>0,分类讨论即可求出
解答 解:设g(x)=$\frac{f(x)}{x}$,则g(x)的导数为:g′(x)=$\frac{xf′(x)-f(x)}{{x}^{2}}$,
∵当x>0时,xf′(x)-f(x)>0,
即当x>0时,g′(x)恒大于0,
∴当x>0时,函数g(x)为增函数,
∵f(x)为奇函数
∴函数g(x)为定义域上的偶函数
又∵g(-1)=$\frac{f(-1)}{-1}$=0,
∵f(x)>0,
∴当x>0时,$\frac{f(x)}{x}$>0,当x<0时,$\frac{f(x)}{x}$<0,
∴当x>0时,g(x)>0=g(1),当x<0时,g(x)<0=g(-1),
∴x>1或-1<x<0
故使得f(x)>0成立的x的取值范围是(-1,0)∪(1,+∞),
故答案为:(-1,0)∪(1,+∞)
点评 本题主要考查了利用导数判断函数的单调性,并由函数的奇偶性和单调性解不等式,属于综合题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | $\frac{1}{2}$ | D. | $\frac{1}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a<b<c | B. | a<c<b | C. | c<a<b | D. | c<b<a |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com