精英家教网 > 高中数学 > 题目详情
1.正项等比数列{an}中,a1+a2+…+a5=27,$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{5}}$=3,则a3=3.

分析 设等比数列{an}的公比为q,利用a1+a2+…+a5=27,$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{5}}$=3,可得$\frac{{a}_{3}}{{q}^{2}}+\frac{{a}_{3}}{q}+{a}_{3}+{a}_{3}q+{a}_{3}{q}^{2}$=27,$\frac{{q}^{2}}{{a}_{3}}+\frac{q}{{a}_{3}}+\frac{1}{{a}_{3}}+\frac{1}{{a}_{3}q}+\frac{1}{{a}_{3}{q}^{2}}$=3,两式相除,可得a3

解答 解:设等比数列{an}的公比为q,则
∵a1+a2+…+a5=27,$\frac{1}{{a}_{1}}$+$\frac{1}{{a}_{2}}$+…+$\frac{1}{{a}_{5}}$=3,
∴$\frac{{a}_{3}}{{q}^{2}}+\frac{{a}_{3}}{q}+{a}_{3}+{a}_{3}q+{a}_{3}{q}^{2}$=27,$\frac{{q}^{2}}{{a}_{3}}+\frac{q}{{a}_{3}}+\frac{1}{{a}_{3}}+\frac{1}{{a}_{3}q}+\frac{1}{{a}_{3}{q}^{2}}$=3,
两式相除,可得${{a}_{3}}^{2}$=9,
∵a3>0,
∴a3=3
故答案为:3.

点评 本题考查等比数列的通项,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

11.若tan2θ=2$\sqrt{2}$,则tanθ=$\frac{\sqrt{2}}{2}$或$-\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设一直角∠MON,试在ON,OM边上及角内各求一点A,B,C,使得BC+CA=l(定长),且四边形ACBO的面积最大.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知三角形两边长分别为4和2$\sqrt{3}$,第三条边上的中线长为$\sqrt{5}$,则三角形的外接圆半径为$\frac{6\sqrt{33}}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=2x|2x-a|-6.
(1)当a=0时,求满足f(x)=0的x值;
(2)当a=1时,解不等式f(x)>0;
(3)若方程f(x)=0有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某商人开始将进货单价为8元的商品按每件10元售出,每天可销售100件,现在他想采用提高售价的方法来增加利润,已知这种商品每件提价1元,每天销售就要减少10件.
(1)写出售出价格x元与每天所得的毛利润y元之间的函数关系式;
(2)问每天售出价为多少时,才能使每天获得利润最大?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.给出下列命题:
①($\overrightarrow{a}$•$\overrightarrow{b}$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow{b}$•$\overrightarrow{c}$)②$\overrightarrow{a}$•$\overrightarrow{b}$=0?$\overrightarrow{a}$⊥$\overrightarrow{b}$;③若$\overrightarrow{a}$,$\overrightarrow{b}$是两个单位向量,则|$\overrightarrow{a}$|=|$\overrightarrow{b}$|;④若$\overrightarrow{a}$•$\overrightarrow{b}$=0,则$\overrightarrow{a}$=$\overrightarrow{0}$或$\overrightarrow{b}$=$\overrightarrow{0}$.
其中正确的命题的序号是②③.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若0<a<1,0<b<1,且满足(1-a)b2+a(1-b)2+ka(1-a)≥0恒成立的k的取值范围是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知椭圆C的中心为O,两焦点为F1、F2,M是椭圆C上一点,且满足|$\overrightarrow{M{F}_{1}}$|=2|$\overrightarrow{MO}$|=2|$\overrightarrow{M{F}_{2}}$|,则椭圆的离心率e=(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{2}{3}$C.$\frac{\sqrt{3}}{3}$D.$\frac{\sqrt{6}}{3}$

查看答案和解析>>

同步练习册答案