精英家教网 > 高中数学 > 题目详情
3.如图,在正方形ABCD中,M,N分别是BC,CD的中点,若$\overrightarrow{AC}=λ\overrightarrow{AM}+μ\overrightarrow{BN}$,则λ+μ的值为(  )
A.$\frac{8}{5}$B.$\frac{5}{8}$C.1D.-1

分析 根据向量的平行四边形法则和三角形法则和向量的数乘运算即可求出

解答 解:∵$\overrightarrow{AM}$=$\overrightarrow{AB}$+$\overrightarrow{BM}$=$\overrightarrow{AB}$+$\frac{1}{2}$$\overrightarrow{BC}$=$\overrightarrow{DC}$+$\frac{1}{2}$$\overrightarrow{BC}$,
$\overrightarrow{BN}$=$\overrightarrow{BC}$+$\overrightarrow{CN}$=$\overrightarrow{BC}$-$\frac{1}{2}$$\overrightarrow{DC}$,
∴$\overrightarrow{BC}$=$\frac{2}{5}$$\overrightarrow{AM}$+$\frac{4}{5}$$\overrightarrow{BN}$,$\overrightarrow{DC}$=$\frac{4}{5}$$\overrightarrow{AM}$-$\frac{2}{5}$$\overrightarrow{BN}$
∴$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{DC}$+$\overrightarrow{BC}$=$\frac{2}{5}$$\overrightarrow{AM}$+$\frac{4}{5}$$\overrightarrow{BN}$+$\frac{4}{5}$$\overrightarrow{AM}$-$\frac{2}{5}$$\overrightarrow{BN}$=$\frac{6}{5}$$\overrightarrow{AM}$+$\frac{2}{5}$$\overrightarrow{BN}$,
∵$\overrightarrow{AC}=λ\overrightarrow{AM}+μ\overrightarrow{BN}$,
∴λ=$\frac{6}{5}$,μ=$\frac{2}{5}$,
∴λ+μ=$\frac{8}{5}$,
故选:A

点评 本题考查了向量的平行四边形法则和三角形法则和向量的数乘运算,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.已知实数x,y满足不等式组$\left\{\begin{array}{l}{x≥1}\\{y≥1}\\{x+y≤3}\end{array}\right.$,则2x+y的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知集合M={x|$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{4}$=1},N={y|$\frac{x}{3}$+$\frac{y}{2}$=1},M∩N=(  )
A.B.{(3,0),(0,2)}C.[一2,2]D.[一3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.某宣传部门网站为弘扬社会主义思想文化,开展了以核心价值观为主题的系列宣传活动,并以“社会主义核心价值观”作为关键词便于网民搜索.此后,该网站的点击量每月都比上月增长50%,那么4个月后,该网站的点击量和原来相比,增长为原来的(  )
A.2倍以上,但不超过3倍B.3倍以上,但不超过4倍
C.4倍以上,但不超过5倍D.5倍以上,但不超过6倍

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数$f(x)=sin2x+sin(\frac{π}{3}-2x)$.
(Ⅰ)求f(x)的最大值及相应的x值;
(Ⅱ)设函数$g(x)=f(\frac{π}{4}x)$,如图,点P,M,N分别是函数y=g(x)图象的零值点、最高点和最低点,求cos∠MPN的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.不等式组$\left\{\begin{array}{l}x≥2\\ x+y≥6\\ x-2y≤0\end{array}\right.$所表示的平面区域为Ω,若直线ax-y+a+1=0与Ω有公共点,则实数a的最小值为(  )
A.$-\frac{1}{3}$B.$\frac{1}{5}$C.$\frac{1}{4}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,角A、B、C所对的边分别是a、b、c,已知sinB+sinC=msinA(m∈R),且a2-4bc=0.
(1)当a=2,$m=\frac{5}{4}$时,求b、c的值;
(2)若角A为锐角,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,已知三棱柱ABC-A1B1C1的底面ABC是等边三角形,且AA1⊥底面ABC,M为AA1的中点,N在线段AB上,且AN=2NB,点P在CC1上.
(1)证明:平面BMC1⊥平面BCC1B1
(2)当$\frac{CP}{P{C}_{1}}$为何值时,有PN∥平面BMC1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某公司为评估两套促销活动方案(方案1运作费用为5元/件;方案2的运作费用为2元/件),在某地区部分营销网点进行试点(每个试点网点只采用一种促销活动方案),运作一年后,对比该地区上一年度的销售情况,制作相应的等高条形图如图所示.
(1)请根据等高条形图提供的信息,为该公司今年选择一套较为有利的促销活动方案(不必说明理由);
(2)已知该公司产品的成本为10元/件(未包括促销活动运作费用),为制定本年度该地区的产品销售价格,统计上一年度的8组售价xi(单位:元/件,整数)和销量yi(单位:件)(i=1,2,…,8)如下表所示:
售价x3335373941434547
销量y840800740695640580525460
①请根据下列数据计算相应的相关指数R2,并根据计算结果,选择合适的回归模型进行拟合;
②根据所选回归模型,分析售价x定为多少时?利润z可以达到最大.
$\hat y=-1200lnx+5000$$\hat y=-27x+1700$$\hat y=-\frac{1}{3}{x^2}+1200$
${\sum_{i=1}^8{({{y_i}-{{\hat y}_i}})}^2}$49428.7411512.43175.26
${\sum_{i=1}^8{({{y_i}-\overline y})}^2}$124650
(附:相关指数${R^2}=1-\frac{{{{\sum_{i=1}^n{({{y_i}-{{\hat y}_i}})}}^2}}}{{{{\sum_{i=1}^n{({{y_i}-\overline y})}}^2}}}$)

查看答案和解析>>

同步练习册答案