精英家教网 > 高中数学 > 题目详情
在函数y=cosx(x∈[-
π
2
π
2
])的图象与x轴所围成的图形中,直线l:x=t(t∈[-
π
2
π
2
])从点A向右平行移动至B,l在移动过程中扫过平面图形(图中阴影部分)的面积为S,则S关于t的函数S=f(t)的图象可表示为(  )
A、
B、
C、
D、
考点:函数的图象
专题:函数的性质及应用
分析:根据阴影部分的面积变化情况可知,先开始面积增长的速度在增加,再增长的速度保持平衡,最后增长的速度逐渐减缓,结合切线的斜率与增长的速度之间的联系进行判定即可.
解答: 解:由阴影部分的面积变化情况可知,
先开始面积增长的速度在增加,再增长的速度增加,然后增长的速度逐渐减缓,
对应着图形就是切线的斜率在增加,再平衡,最后切线的斜率在减小.
故选:D.
点评:本题主要考查了函数的图象,以及切线的斜率与增长的速度之间的联系,同时考查了数形结合的数学思想,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

椭圆
x=3cosθ+1
y=4sinθ
(θ为参数),焦点坐标为
 
.两条准线的方程
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两定点A(-2,0),B(2,0),若直线上存在点P,使得|PA|-|PB|=2,则称该直线为“优美直线”,给出下列直线:①y=x+1②y=
3
x+2③y=-x+3④y=-2x-1.其中是“优美直线”的序号是(  )
A、①④B、③④C、②③D、①③

查看答案和解析>>

科目:高中数学 来源: 题型:

设点F为锐角△ABC的“费马点”,即F是在△ABC内满足∠AFB=∠BFC=∠CFA=120°的点.若|
FA
|=3,
FB
|=4,|
FC
|=5,且实数x,y满足
AF
=x
AB
+y
AC
,则
x
y
=(  )
A、
5
4
B、
25
16
C、
3
2
D、
9
4

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=xlnx,曲线y=f(x)在点(x0,f(x0))处切线的斜率为2,则x0=(  )
A、
1
e
B、e
C、
ln2
2
D、ln2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的公差d≠0,且a1,a3,a13成等比数列,若a1=1,Sn是数列{an}前n项的和,则
2Sn+16
an+3
(n∈N+)的最小值为(  )
A、4
B、3
C、2
3
-2
D、
9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=cosx(-
π
2
≤x≤
π
2
)与两坐标轴所围成的图形的面积为(  )
A、4
B、2
C、
5
2
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

函数f(x)=
2x-1
lnx
的定义域为(  )
A、(0,+∞)
B、(0,1)∪(1,+∞)
C、(0,1)
D、(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线l经过抛物线x2=4y的焦点,且与抛物线交于A、B两点,点O为坐标原点.
(1)证明:
OA
OB
=-3;
(2)若△AOB的面积为4,求直线l的方程.

查看答案和解析>>

同步练习册答案