精英家教网 > 高中数学 > 题目详情
某中学团委组织了“弘扬奥运精神,爱我中华”的知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图所示部分频率分布直方图.观察图形给出的信息,回答下列问题:
(1)求第四小组的频率;
(2)估计这次考试的及格率(60分及以上为及格)和平均分.
考点:众数、中位数、平均数,频率分布直方图
专题:概率与统计
分析:(1)利用各组的频率和等于1,求出第四小组的频率;
(2)计算60分及以上的分数的频率和即为合格率,利用组中值求出平均分.
解答: 解:(1)∵频率分布直方图中各组的频率和等于1,
∴第四组的频率为f4=1-(0.025+0.015×2+0.01+0.005)×10=0.3;(3分)
其频率分布直方图如图所示;
(2)依题意,60分及以上的分数所在的第三、四、五、六组,
频率和为(0.015+0.030+0.025+0.005)×10=0.75;
∴估计这次考试的合格率是75%;(6分)
利用组中值估算这次考试的平均分,可得:
45•f1+55•f2+65•f3+75•f4+85•f5+95•f6
=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71;
所以估计这次考试的平均分是71分.  (10分)
点评:本题考查了频率分布直方图的应用问题,解题时应利用频率分布直方图的知识,会求频率、众数与平均数等,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某公司销售小米、红米、黑米三款手机,每款手机都有经济型和豪华型两种型号,据统计2014年3月份共销售800部手机(具体销售情况见表)
小米手机 红米手机 黑米手机
经济型 240 x y
豪华型 160 80 z
已知在销售的800部手机中,经济型红米手机销售的频率是0.15.
(1)现用分层抽样的方法在小米、红米、黑米三款手机中抽取60部,求在黑米手机中抽取多少部?
(2)若y≥96,z≥93,求销售的黑米手机中经济型比豪华型多的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

实数m取什么值时,复数z=m(m+2)+(m2-4)i(i是虚数单位):
(1)是虚数;
(2)是纯虚数;
(3)在复平面内对应的点在第四象限.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点C(1,-2),P(-5,-2),动点满足|
QC
|=3.
(1)求动点Q的轨迹方程;
(2)求
PC
PQ
夹角的取值范围;
(3)是否存在斜率为1的直线l,l被点Q的轨迹所截得的弦为AB,以AB为直径的圆过原点?若存在,求出l的方程,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥平面ABCD,四边形ABCD为平行四边形,AB=1,AC=1,BC=
2
,点E在PC上,AE⊥PC.
(Ⅰ)证明:PC⊥平面ABE;
(Ⅱ)若∠PDC的大小为60度,求二面角B-AE-D的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在正方体ABCD-A1B1C1D1中,AB=2,点E、F分别是AB、A1D1的中点.
(Ⅰ)求线段EF的长;
(Ⅱ)求异面直线EF与CB1所成角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m,n是正整数,f(x)=(1+x)m+(1+x)n的展开式中x的系数为7,求f(x)展开式中x2的系数的最小值,并求这时f(0.003)的近似值(精确到0.01).

查看答案和解析>>

科目:高中数学 来源: 题型:

在综合素质评价的某个维度的测评中,依据评分细则,学生之间相互打分,最终将所有的数据合成一个分数,满分100分,按照大于80分为优秀,小于80分为合格.为了解学生在该维度的测评结果,从毕业班中随机抽出一个班的数据,该班共有60名学生,得到如下的列联表.
优秀 合格 总计
男生 6
女生 18
总计 60
已知在该班随机抽取1人测评结果为优秀的概率为
1
3

(Ⅰ)请完成上面的列联表;
(Ⅱ)能否在犯错误的概率不超过0.10的前提下认为性别与测评结果有关系?
P(K2≥k0 0.100 0.050 0.010 0.001
k0 2.706 3.841 6.635 10.828
K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)

查看答案和解析>>

科目:高中数学 来源: 题型:

设变量x、y满足约束条件
x+y≤a
x+y≥8
x≥6
且不等式x+2y≤14恒成立,则实数a的取值范围是
 

查看答案和解析>>

同步练习册答案