精英家教网 > 高中数学 > 题目详情
4.已知:函数f(x)=sinxcosx-$\sqrt{3}$sin2
(Ⅰ)求f($\frac{π}{6}$)的值;    
(Ⅱ)设α∈(0,π),f($\frac{α}{2}$)=$\frac{1}{4}$-$\frac{\sqrt{3}}{2}$,求sinα的值.

分析 (Ⅰ)由特殊角的三角函数值即可得解.
(Ⅱ) 由三角函数中的恒等变换应用化简已知等式可得16sin2α-4sinα-11=0,结合范围α∈(0,π),即可求得sinα的值.

解答 (本题10分)
解:(Ⅰ)∵$sin\frac{π}{6}=\frac{1}{2},cos\frac{π}{6}=\frac{\sqrt{3}}{2}$,
∴f($\frac{π}{6}$)=sin$\frac{π}{6}$cos$\frac{π}{6}$-$\sqrt{3}$sin2$\frac{π}{6}$=0.    …(3分)
(Ⅱ) f(x)=$\frac{\sqrt{3}}{2}$cos2x-$\frac{\sqrt{3}}{2}$+$\frac{1}{2}sin2x$,…(5分)
∴f($\frac{α}{2}$)=$\frac{\sqrt{3}}{2}$cosα-$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$sinα=$\frac{1}{4}-\frac{\sqrt{3}}{2}$,整理可得:2$\sqrt{3}$cosα+2sinα=1,即:2$\sqrt{3}$$\sqrt{1-si{n}^{2}α}$=1-2sinα,
∴两边平方可得:16sin2α-4sinα-11=0,解得sinα=$\frac{1±3\sqrt{5}}{8}$,…(8分)
∵α∈(0,π),∴sinα>0,故sinα=$\frac{1+3\sqrt{5}}{8}$.….(10分)

点评 本题主要考查了三角函数中的恒等变换应用,属于基本知识的考查.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=2sin(ωx+φ),(ω>0,0<φ<2π)的部分图象如图所示,则f(x)的表达式为(  )
A.$f(x)=2sin(\frac{4}{3}x+\frac{2}{9}π)$B.$f(x)=2sin(\frac{4}{3}x+\frac{25}{18}π)$
C.$f(x)=2sin(\frac{3}{2}x+\frac{π}{4})$D.$f(x)=2sin(\frac{3}{2}x+\frac{5}{4}π)$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.从同一顶点出发的三条棱长分别为1、1、$\sqrt{2}$的长方体的各顶点均在同一个球面上,则该球的体积为 (  )
A.$\frac{32π}{3}$B.C.D.$\frac{4π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=2.
(1)求证:CD⊥SA;
(2)求二面角C-SA-D的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中,a,b,c分别为内角A,B,C所对的边,若a2+c2-ac≥b2,则角B的取值范围是(0,$\frac{π}{3}$].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知椭圆C的对称轴为坐标轴,焦点F1,F2在x轴上,离心率e=$\frac{1}{2}$,圆x2+y2-2$\sqrt{3}$y-6=0的圆心E恰好是该椭圆的一个顶点.
(1)求椭圆C的方程;
(2)过点P(4,0)且不垂直于x轴直线l与椭圆C相交于不同的A,B两点,设点B关于x轴的对称点为G.
①求$\overrightarrow{OA}•\overrightarrow{OB}$的取值范围;
②证明:直线AG与x轴相交于一定点.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图,直线l是曲线y=f(x)在x=5处的切线,则f(5)+f′(5)=7.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知四个学生和一个老师共5个人排队,那么老师排在中间的概率是$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=2cos$\frac{x}{2}$($\sqrt{3}$cos$\frac{x}{2}$-sin$\frac{x}{2}$),在△ABC中,∠A、∠B、∠C的对边分别是a、b、c且f(C)=$\sqrt{3}$+1.
(1)求∠C的大小;
(2)若c=2,且△ABC的面积为2$\sqrt{3}$,求cos2A+cos2B的值.

查看答案和解析>>

同步练习册答案