精英家教网 > 高中数学 > 题目详情
18.设Sn为等比数列{an}的前n项和,a2-8a5=0,则$\frac{{S}_{8}}{{S}_{4}}$的值为$\frac{17}{16}$.

分析 先求出公比,再根据等比数列的性质即可求出

解答 解:设{an}的公比为q,依题意得$\frac{{a}_{5}}{{a}_{2}}$=$\frac{1}{8}$=q3,因此q=$\frac{1}{2}$.注意到a5+a6+a7+a8=q4(a1+a2+a3+a4),
即有S8-S4=q4S4,因此S8=(q4+1)S4
$\frac{{S}_{8}}{{S}_{4}}$=q4+1=$\frac{17}{16}$,
故答案为:$\frac{17}{16}$

点评 本题考查了等比数列的求和公式和通项公式,属于基础题

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.若函数f(x)=$\sqrt{3}$sinx+cosx,0≤x<$\frac{π}{2}$,则f(x)的最大值为(  )
A.1B.2C.$\sqrt{3}$+1D.$\sqrt{3}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.函数f(x)若在定义域内存在x0,使得f(-x0)=-f(x0)成立,则称x0为函数f(x)的局部对称点.
(Ⅰ)若a,b,c∈R,证明函数f(x)=ax3+bx2+cx-b必有局部对称点;
(Ⅱ)是否存在常数m,使得定义在区间[-1,1]上的函数f(x)=2x+m有局部对称点?若存在,求出m的范围,否则说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,在三棱柱ABC-A1B1C1中,$AB=BC=\sqrt{5},AC=2$且点A1在底面ABC上的射影O恰是线段AC的中点,$A{A_1}=\sqrt{5}$.
(1)判断A1B与B1C是否垂直,并证明你的结论;
(2)求点A1到平面BCC1B1的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.不等式$\frac{1}{x}>1$的解集是(  )
A.{x|x>1}B.{x|x<1}C.{x|0<x<1}D.{x|x>1或x<-1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.下面给出四种说法:
①用相关指数R2来刻画回归效果,R2越小,说明模型的拟合效果越好;
②命题P:“?x0∈R,x02-x0-1>0”的否定是¬P:“?x∈R,x2-x-1≤0”;
③设随机变量X服从正态分布N(0,1),若P(x>1)=p,则P(-1<X<0)=$\frac{1}{2}$-p
④回归直线一定过样本点的中心($\overline{x}$,$\overline{y}$).
其中正确的说法有②③④(请将你认为正确的说法的序号全部填写在横线上)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.随机地取两个数x,y,使得x∈[-1,1],y∈[0,1],则满足y≥x2的概率是(  )
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{1}{4}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.命题“?x0∈R,x02+x0+2017>0”的否定为(  )
A.?x0∈R,${x_0}^2+{x_0}+2017<0$B.?x∈R,x2+x+2017≤0
C.?x0∈R,${x_0}^2+{x_0}+2017≤0$D.?x∈R,x2+x+2017>0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.在复平面内复数z=$\frac{3+4i}{1-i}$(i为虚数单位)对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步练习册答案