【题目】设等差数列的前项和为,且(是常数,),.
(1)求的值及数列的通项公式;
(2)设,数列的前项和为,证明:.
【答案】(1)(2)详见解析
【解析】
(1)由Sn=nan+an﹣c,得a1=2c,a2=3c,从而得到c=2,由此能求出c的值及数列{an}的通项公式;(2)根据第一问得到数列的通项,裂项求和即可得到数列之和,之后得到Tn+1Tn>0,故可得到数列之和的最小值,可得证.
(1)因为Sn=nan+an﹣c,
所以当n=1时,,解得a1=2c,
当n=2时,S2=a2+a2﹣c,即a1+a2=a2+a2﹣c,
解得a2=3c,所以3c=6,解得c=2,
则a1=4,数列{an}的公差d=a2﹣a1=2,
所以an=a1+(n﹣1)d=2n+2.
(2)由已知得:bn== ()
Tn= ()+ ()+……+ ()= ()<
因为nN*,所以Tn+1 Tn=>0
因此数列{Tn}在nN*上是增数列.
所以Tn≥T1=,综上所述,原不等式成立。
科目:高中数学 来源: 题型:
【题目】(题文)已知等差数列{an}的首项a1≠0,前n项和为Sn,且S4+a2=2S3;等比数列{bn}满足b1=a2,b2=a4.
(1)求证:数列{bn}中的每一项都是数列{an}中的项;
(2)若a1=2,设cn=,求数列{cn}的前n项和Tn;
(3)在(2)的条件下,若有f(n)=log3Tn,求f(1)+f(2)+…+f(n)的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】选修4-4:坐标系与参数方程
在平面直角坐标系中,已知曲线的参数方程为,(为参数),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的极坐标方程及曲线的直角坐标方程;
(2)已知曲线交于两点,过点且垂直于的直线与曲线交于两点,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的上顶点为,离心率为. 抛物线截轴所得的线段长为的长半轴长.
(1)求椭圆的方程;
(2)过原点的直线与相交于两点,直线分别与相交于两点
证明:以为直径的圆经过点;
记和的面积分别是,求的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数,是奇函数.
(1)求实数m的值;
(2)画出函数的图象,并根据图象求解下列问题;
①写出函数的值域;
②若函数在区间上单调递增,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】随着我国经济的发展,居民的储蓄存款逐年增长.设某地区城乡居民人民币储蓄存款(年底余额)如下表:
年 份 | 2013 | 2014 | 2015 | 2016 | 2017 |
时间代号t | 1 | 2 | 3 | 4 | 5 |
储蓄存款y/千亿元 | 5 | 6 | 7 | 8 | 10 |
(1)求y关于t的线性回归方程t+;
(2)用所求回归方程预测该地区2018年(t=6)的人民币储蓄存款.
附:回归方程t+中,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知命题p:x∈R,2mx2+mx-<0,命题q:2m+1>1.若“p∧q”为假,“p∨q”为真,则实数m的取值范围是( )
A. (-3,-1)∪[0,+∞) B. (-3,-1]∪[0,+∞)
C. (-3,-1)∪(0,+∞) D. (-3,-1]∪(0,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com