精英家教网 > 高中数学 > 题目详情
14.已知角φ的终边在射线$y=\sqrt{3}x(x≤0)$上,函数f(x)=cos(ωx+φ)(ω>0)图象的相邻两条对称轴之间的距离等于$\frac{π}{3}$,则$f(\frac{π}{6})$=(  )
A.$-\frac{{\sqrt{3}}}{2}$B.$\frac{1}{2}$C.$-\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

分析 根据题意求出φ与ω的值,写出f(x)解析式,再求$f(\frac{π}{6})$的值.

解答 解:角φ的终边在射线$y=\sqrt{3}x(x≤0)$上,
∴φ=-$\frac{2π}{3}$;
又函数f(x)图象的相邻两条对称轴之间的距离等于$\frac{π}{3}$,
∴T=$\frac{2π}{ω}$=2×$\frac{π}{3}$,
解得ω=3;
∴f(x)=cos(3x-$\frac{2π}{3}$),
∴$f(\frac{π}{6})$=cos(3×$\frac{π}{6}$-$\frac{2π}{3}$)=cos(-$\frac{π}{6}$)=$\frac{\sqrt{3}}{2}$.
故选:D.

点评 本题主要考查了任意角的三角函数定义与图象性质的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.为弘扬中国传统文化,2017年中央电视台著名主持人董卿主持了一档节目《中国诗词大会》参赛的100名选手年龄分布情况如下:

(Ⅰ)根据频率分布直方图,估计这组数据的中位数和平均值$\overline{x}$(保留1位小数)
(Ⅱ)节目最后由高中生武亦姝和编辑彭敏争夺冠军,比赛规定:主持人每出一题,两位选手必有一人得1分,另一人不得分,先得5分者将成为第二季的总冠军,现比赛进行到武亦姝和彭敏的得分比为3:2,接下来假设主持人每出一道题,彭敏得分的概率为$\frac{3}{5}$,武亦姝得分的概率为$\frac{2}{5}$,请问最终武亦姝获得冠军的概率是多少?
(Ⅲ)现从年龄在[10,20)、[50,60),[60,70]内的三组选手中任意抽取2人,求抽出选手中年龄大于50岁的人数ξ的概率分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.直线2x+2y-1=0的倾斜角是135°.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.定义:函数f(x)在闭区间[a,b]上的最大值与最小值之差为函数f(x)的极差,若定义在区间[-2b,3b-1]上的函数f(x)=x3-ax2-(b+2)x是奇函数,则a+b=1,函数f(x)的极差为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.等差数列{an}的公差为2,若a2,a4,a8成等比数列,设Sn是数列{an}的前n项和,则S10的值为(  )
A.110B.90C.55D.45

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知p:a>|b|,q:a2>b2,则下列结论正确的是(  )
A.p是q的充分不必要条件B.p是q的必要不充分条件
C.p是q的既不充分也不必要条件D.p是q的充要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=x2+1,g(x)=2alnx+1(a∈R)
(1)求函数h(x)=f(x)-g(x)的极值;
(2)当a=e时,是否存在实数k,m,使得不等式g(x)≤kx+m≤f(x)恒成立?若存在,请求实数k,m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知O为坐标原点,点A(5,-4),点M(x,y)为平面区域$\left\{\begin{array}{l}{x+y≥2}\\{x<1}\\{y≤2}\end{array}\right.$内的一个动点,则$\overrightarrow{OA}$•$\overrightarrow{OM}$的取值范围是[-8,1).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=4ex(x+1)-k($\frac{2}{3}$x3+2x2),若x=-2是函数f(x)的唯一一个极值点,则实数k的取值范围是(  )
A.(-2e,e]B.[0,2e]C.(-∞,-e)∪[e,2e]D.(-∞,-e)∪[0,e]

查看答案和解析>>

同步练习册答案