| A. | $\frac{\sqrt{6}}{2}+\frac{3}{2}$ | B. | $\frac{3}{2}$ | C. | $\frac{{\sqrt{2}}}{2}+\frac{3}{2}$ | D. | $\frac{\sqrt{3}}{2}$+$\frac{3}{2}$ |
分析 有条件利用球的截面的性质求得球心到截面圆的距离,再求出垂直折起的4个小直角三角形的高,再与球的半径相加即得答案.
解答 解:由题意可得,蛋巢的底面是边长为1的正方形,
故经过4个顶点截鸡蛋所得的截面圆的直径为1,
由于鸡蛋的体积为$\frac{4}{3}$π,故鸡蛋(球)的半径为1,
故球心到截面圆的距离为$\sqrt{1-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$,
而垂直折起的4个小直角三角形的高为$\frac{1}{2}$,
故鸡蛋最高点与蛋巢底面的距离为$\frac{\sqrt{3}}{2}$+1+$\frac{1}{2}$=$\frac{\sqrt{3}}{2}+\frac{3}{2}$,
故选:D
点评 本题主要考查球的截面的性质,图形的折叠问题,点、线、面间的位置关系,属于中档题
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①② | B. | ③④ | C. | ①④ | D. | ②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | 0 | 1 | 2 | 3 |
| y | -1 | 1 | m | 8 |
| A. | 4 | B. | $\frac{9}{2}$ | C. | 5 | D. | 6 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com