精英家教网 > 高中数学 > 题目详情
16.具有线性相关关系得变量x,y,满足一组数据如表所示,若y与x的回归直线方程为$\widehat{y}$=3x-$\frac{3}{2}$,则m的值(  )
x0123
y-11m8
A.4B.$\frac{9}{2}$C.5D.6

分析 根据表中所给的数据,做出横标和纵标的平均数,得到样本中心点,根据由最小二乘法求得回归方程$\stackrel{∧}{y}$=3x-$\frac{3}{2}$,代入样本中心点求出该数据的值.

解答 解:由表中数据得:$\overline{x}$=$\frac{3}{2}$,$\overline{y}$=$\frac{m+8}{4}$,
由于由最小二乘法求得回归方程$\stackrel{∧}{y}$=3x-$\frac{3}{2}$,
将$\overline{x}$=$\frac{3}{2}$,$\overline{y}$=$\frac{m+8}{4}$代入回归直线方程,得m=4.
故选:A

点评 本题考查数据的回归直线方程,利用回归直线方程恒过样本中心点是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.若$\overrightarrow a$=(0,3),$\overrightarrow b$=($\sqrt{3}$,1),$\overrightarrow{c}$=3$\overrightarrow{a}$+5$\overrightarrow{b}$,$\overrightarrow{d}$=m$\overrightarrow{a}$-5$\overrightarrow{b}$,
(1)试问m为何值时,$\overrightarrow c$与$\overrightarrow{d}$互相平行;
(2)试问m为何值时,$\overrightarrow c$与$\overrightarrow{d}$互相垂直.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设(1-x)7=a0+a1x+a2x2+…+a7x7,则a0,a1,a2,…,a7中最大的数是a4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知x,y满足约束条件$\left\{\begin{array}{l}{{x}^{2}+{y}^{2}≤4}\\{x-2y-2≤0}\\{2x-y+2≥0}\end{array}\right.$,则z=3x+y的最大值为(  )
A.2$\sqrt{10}$B.$\sqrt{5}$C.2D.2$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,用一边长为$\sqrt{2}$的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将体积为$\frac{4}{3}$π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋最高点与蛋巢底面的距离为 (  )
A.$\frac{\sqrt{6}}{2}+\frac{3}{2}$B.$\frac{3}{2}$C.$\frac{{\sqrt{2}}}{2}+\frac{3}{2}$D.$\frac{\sqrt{3}}{2}$+$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,|$\overrightarrow{a}$|=$\sqrt{2}$,$\overrightarrow{OA}$=$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow{b}$,若△AOB是以O为直角顶点的等腰直角三角形,则△AOB的面积为(  )
A.8B.4C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在直角坐标系xOy中,以坐标原点O为极点,以x轴正半轴为极轴建立极坐标系.已知曲线C1:$\left\{\begin{array}{l}{x=4+t}\\{y=5+2t}\end{array}\right.$(t为参数),曲线C2:ρ2-6ρcosθ-10ρsinθ+9=0.
(Ⅰ)将曲线C1化成普通方程,将曲线C2化成参数方程;
(Ⅱ)判断曲线C1和曲线C2的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.先后掷两次正方体骰子(骰子的六个面分别标有点数1,2,3,4,5,6),骰子朝上的面的点数分别为m,n,则mn是偶数的概率为$\frac{3}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.命题p:函数f(x)=lg(ax2-2ax+1)的定义域为R,命题q:不等式$\frac{\sqrt{3}}{4}$sinx+$\frac{1}{4}$cosx-a≥0的解集为∅,若“p∧q”为假命题且“p∨q”为真命题,求实数a的取值范围.

查看答案和解析>>

同步练习册答案