精英家教网 > 高中数学 > 题目详情
10.已知函数f(x)=ax-e(x+1)lna-$\frac{1}{a}$(a>0,且a≠1)
(I)当a=e时,求函数y=f(x)在x=1处的切线方程;
(Ⅱ)若函数f(x)只有一个零点,求a的值.

分析 (Ⅰ)求出函数的导数,计算f(1),f′(1),求出切线方程即可;
(Ⅱ)求出原函数的导函数,分0<a<1和a>1求得原函数的最小值,由最小值等于0求得a值.

解答 解:(Ⅰ)a=e时,f(x)=ex-e(x+1)-$\frac{1}{e}$,
f′(x)=ex-e,f(1)=e-2e-$\frac{1}{e}$=-e-$\frac{1}{e}$,f′(1)=0,
故切线方程是:y=e+$\frac{1}{e}$;
(Ⅱ)f′(x)=axlna-elna=lna(ax-e),
当0<a<1时,由f′(x)=axlna-elna=lna(ax-e)<0,得ax-e>0,即x<$\frac{1}{lna}$
由f′(x)=axlna-elna=lna(ax-e)>0,得ax-e<0,即x>$\frac{1}{lna}$.
∴f(x)在(-∞,$\frac{1}{lna}$)上为减函数,在($\frac{1}{lna}$,+∞)上为增函数,
∴当x=$\frac{1}{lna}$时函数取得最小值为f($\frac{1}{lna}$)=a$\frac{1}{lna}$-e($\frac{1}{lna}$+1)lna-$\frac{1}{a}$
=a$\frac{1}{lna}$-elna-e-$\frac{1}{a}$.
要使函数f(x)只有一个零点,则a$\frac{1}{lna}$-elna-e-$\frac{1}{a}$=0,得a=$\frac{1}{e}$;
当a>1时,由f′(x)=axlna-elna=lna(ax-e)<0,得ax-e<0,即x<$\frac{1}{lna}$.
由f′(x)=axlna-elna=lna(ax-e)>0,得ax-e>0,即x>$\frac{1}{lna}$.
∴f(x)在(-∞,$\frac{1}{lna}$)上为减函数,在($\frac{1}{lna}$,+∞)上为增函数,
∴当x=$\frac{1}{lna}$时函数取得最小值为f($\frac{1}{lna}$)=a$\frac{1}{lna}$-e($\frac{1}{lna}$+1)lna-$\frac{1}{a}$=a$\frac{1}{lna}$-elna-e-$\frac{1}{a}$.
要使函数f(x)只有一个零点,则a$\frac{1}{lna}$-elna-e-$\frac{1}{a}$=0,得a=$\frac{1}{e}$(舍).
综上,若函数f(x)只有一个零点,则a=$\frac{1}{e}$.

点评 本题考查利用导数研究函数的单调性,考查函数零点的判定,体现了数学转化思想方法和分类讨论的数学思想方法,是压轴题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.在正方体ABCD-A1B1C1D1中,M、N、P分别是AD1、BD和B1C的中点.
(1)求证:平面MNP∥平面CC1D1D.
(2)求二面角N-B1C-B的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知△ABC中,b=2,B=45°,C=105°,则a=(  )
A.$\sqrt{2}$B.$\sqrt{3}$+1C.$\sqrt{3}$-1D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.下列集合A到B的对应中,不能构成映射的是(  )
A.①②③B.①②④C.①③④D.②③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.$\underset{lim}{n→∞}$($\frac{2n+1}{2n-1}$)3n=e3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,内角A,B,C所对应的边分别为a,b,c,若c(acosB-$\frac{1}{2}$b)=a2-b2
(1)求角A;
(2)若a=$\sqrt{3}$,求c-b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.学校艺术节对同一类的A,B,C,D四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品获奖情况预测如下:
甲说:“C或D 作品获得一等奖”
乙说:“A 作品获得一等奖”
丙说:“B,D 两项作品未获得一等奖”
丁说:“C 作品获得一等奖”
若这四位同学中有且仅有两位说的话是对的,则获得一等奖的作品是A.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在△ABC中若tanA=$\frac{1}{3}$,C=$\frac{5}{6}$π,BC=1,则AB=$\frac{{\sqrt{10}}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=-x2+2ax在区间[1,2]上是减函数,则a的取值范围是(  )
A.a>1B.a≤1C.a<1D.a≥1

查看答案和解析>>

同步练习册答案