精英家教网 > 高中数学 > 题目详情
已知a、b、c为△ABC的三边,且(a+c)(a-c)=b2+bc,则角A等于(  )
A、150°B、120°
C、60°D、30°
考点:余弦定理
专题:解三角形
分析:由条件利用余弦定理求得cosA的值,从而求得A的值.
解答: 解:△ABC中,∵(a+c)(a-c)=b2+bc,∴b2+c2-a2=-bc,
∴cosA=
b2+c2-a2
2bc
=
-bc
2bc
=-
1
2
,∴A=120°,
故选:B.
点评:本题主要考查余弦定理的应用,根据三角函数的值求角,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-ax2
在x=2处有极值,则实数a的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设常数a>0,(ax2+
1
x
4的展开式中x3的系数为
3
2
,则a=(  )
A、
1
4
B、
1
2
C、2
D、1

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=sinx,x∈[0,2π]与坐标轴围成的面积(  )
A、4B、3C、2D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

sin197°•sin43°-cos(-17°)•sin313°等于(  )
A、
1
2
B、-
1
2
C、-
3
2
D、
3
2

查看答案和解析>>

科目:高中数学 来源: 题型:

以F(-3,0)为焦点的抛物线的标准方程为(  )
A、y2=6x
B、y2=-6x
C、y2=12x
D、y2=-12x

查看答案和解析>>

科目:高中数学 来源: 题型:

不等式-x2+2x+3>0的解集为(  )
A、(-∞,-1)∪(3,+∞)
B、(-1,3)
C、(-∞,-3)∪(1,+∞)
D、(-3,1)

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图的程序框图,若输出的s的值是14,则框图中的n的值是(  )
A、3B、4C、5D、6

查看答案和解析>>

科目:高中数学 来源: 题型:

设P是二面角α-l-β内一点,PA⊥平面α,PB⊥平面β,A,B为垂足,且∠APB=60°,则二面角α-l-β的大小为(  )
A、30°B、60°
C、60°或120°D、120°

查看答案和解析>>

同步练习册答案