精英家教网 > 高中数学 > 题目详情
18.已知g(x)是各项系数均为整数的多项式,f(x)=2x2-x+1,且满足f(g(x))=2x4+4x3+13x2+11x+16,则g(x)的各项系数之和为5.

分析 先g(x)=x2+ax+b,进而可知g(x)的各项系数和为1+a+b=g(1),根据题意根据2[g(1)]2-g(1)-45=0求得g(1),则答案可得.

解答 解:f(g(x))=2[g(x)]2-g(x)+1=2x4+4x3+13x2+11x+16,
依题意,可设g(x)=x2+ax+b,
∴g(x)的各项系数和为1+a+b=g(1);而2[g(1)]2-g(1)+1=2•14+4•13+13•12+11•1+16,
∴2[g(1)]2-g(1)-45=0.
∴g(1)=-$\frac{9}{2}$或5
∵g(x)是各项系数均为整数的多项式,故g(1)不可能是分数,舍去-$\frac{9}{2}$,
∴g(1)=5,
∴g(x)的各项系数之和为5.
故答案为:5

点评 函数是高中数学的一条主线,因而在高考中占有极其重要的地位.本题是函数符号运用的综合题,需要学生具有一定的探究和想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.函数f(x)=$\left\{\begin{array}{l}{lg(x+1),x>0}\\{cos\frac{π}{2}x,x<0}\end{array}\right.$图象上关于坐标原点O对称的点有4对.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数A=$\{x|\frac{1}{4}<{2^x}<16,x∈Z\}$,B={x|x2-3x<0,x∈Z},从集合A中任取一个元素,则这个元素也是集合B中元素的概率为(  )
A.$\frac{1}{5}$B.$\frac{1}{3}$C.$\frac{2}{5}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.给出下列语句:
①若a,b为正实数,a≠b,则a3+b3>a2b+ab2
②若a,b,m为正实数,a<b,则$\frac{a+m}{b+m}<\frac{a}{b}$
③若$\frac{a}{c^2}>\frac{b}{c^2}$,则a>b;
④当x∈(0,$\frac{π}{2}$)时,sin x+$\frac{2}{sinx}$的最小值为2$\sqrt{2}$,其中结论正确的是①③.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若3sinα-4cosα=5,则tan(α+$\frac{π}{4}$)=(  )
A.-$\frac{1}{7}$B.$\frac{1}{7}$C.-7D.7

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.曲线y=ex,y=e-x和直线x=1围成的图形面积是(  )
A.e+$\frac{1}{e}$-2B.e-$\frac{1}{e}$+2C.e+$\frac{1}{e}$D.e-$\frac{1}{e}$-2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)的导函数为f'(x),且$f(x)=-{x^3}+3f'(2)x+\int_0^2{f(x)dx}$,则$\int_0^2{f(x)dx}$=-32.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.若f(x)的定义域为R,f′(x)>3恒成立,f(1)=9,则f(x)>3x+6解集为(  )
A.(-1,1)B.(-1,+∞)C.(-∞,-1)D.(1.+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,动圆x2+y2-4$\sqrt{2}$xcosα-4ysinα+7cos2α-8=0(α∈R,α为参数)的圆心轨迹为曲线C.
(I)求曲线C的方程;
(Ⅱ)已知点P在曲线C上运动,以O为极点,x轴的正半轴为极轴建立极坐标系,若直线l的极坐标方程为2ρcos(θ+$\frac{π}{3}$)=3$\sqrt{5}$,求点P到直线l的最大距离.

查看答案和解析>>

同步练习册答案