精英家教网 > 高中数学 > 题目详情
已知f(x)=sinx+
3
cosx+2,x∈R
(1)求函数f(x)的最小正周期;
(2)求函数f(x)的最大值,并指出此时x的值.
(3)求函数f(x)在[0,2π]的单调增区间.
考点:两角和与差的正弦函数,三角函数的周期性及其求法
专题:三角函数的求值
分析:(1)化简可得f(x)=2sin(x+
π
3
)+2
,可得函数f(x)的最小正周期;
(2)当sin(x+
π
3
)=1即x+
π
3
=2kπ+
π
2
时,函数取最大值;
(3)由2kπ-
π
2
≤x+
π
3
≤2kπ+
π
2
解x的范围和[0,2π]取交集可得.
解答: 解:(1)化简可得f(x)=sinx+
3
cosx+2=2sin(x+
π
3
)+2

∴函数f(x)的最小正周期T=
1
=2π

(2)当sin(x+
π
3
)=1时,f(x)取得最大值4,
此时x+
π
3
=2kπ+
π
2
,解得x=2kπ+
π
6
,k∈Z;
(3)由2kπ-
π
2
≤x+
π
3
≤2kπ+
π
2
可得2kπ-
6
≤x≤2kπ+
π
6
,k∈Z,
和[0,2π]取交集可得函数在[0,2π]的单调增区间为:[0,
π
6
]和[
6
,2π]
点评:本题考查两角和与差的三角函数公式,涉及三角函数的单调性和最值以及周期性,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
1
5-x
定义域是(  )
A、{x|x>5}
B、{x|x<5}
C、{x|x≥5}
D、{x|x≠5}

查看答案和解析>>

科目:高中数学 来源: 题型:

正三棱柱ABC-A1B1C1中底面边长为a,侧棱长为
2
a,求AC1与侧面ABB1A1所成的角.

查看答案和解析>>

科目:高中数学 来源: 题型:

哈六中高三一班开展综合实践活动,某小组出于为同学服务的目的在班级开设了小卖部,该小组同学每天以3元/块的价格购进鲜奶蛋糕,然后以4元/块的价格出售;如果当天卖不完,剩下的蛋糕放学后由同学轮流免费带走,所得利润作为班费.
(1)若该小组一天购进15块鲜奶蛋糕,求当天利润y(单位:元)关于当天需求量n(单位:块,n∈N)的函数解析式.
(2)该小组同学记录了50天鲜奶蛋糕的日需求量(单位:块),整理后得下表:
日需求量n 11 12 13 14 15 16 17 18 19 20
频数 7 3 8 7 5 3 4 5 3 5
当天利润
 
 
 
 
 
 
 
 
 
 
①补全上表;
②假设该小卖部在这50天中每天购进15块鲜奶蛋糕,求这50天的平均日利润(单位:元).
③若该小组一天购进15块鲜奶蛋糕,以50天记录的各需求量的频率作为各需求量发生的概率,求当天的利润不少于15元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知等差数列{an}的前n项和为Sn,S3=18,a4=2.( n∈N*
(1)求数列{an}的通项公式;
(2)求Sn的最大值及此时n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲、乙两人玩猜数字游戏,规则如下:
①连续竞猜3次,每次相互独立;
②每次竟猜时,先由甲写出一个数字,记为a,再由乙猜测甲写的数字,记为b,已知a,b∈{0,1,2,3,4,5},若|a-b|≤1,则本次竞猜成功;
③在3次竞猜中,至少有2次竞猜成功,则两人获奖.
(1)求每一次竞猜成功的概率;
(2)求甲乙两人玩此游戏获奖的概率;
(3)现从6人组成的代表队中选4人参加此游戏,这6人中有且仅有2对双胞胎,记选出的4人中含有双胞胎的对数为X,求X的分布列和期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

若(
1
2
+2x)n展开式中前三项的二项式系数之和为79,求展开式中系数最大的项.

查看答案和解析>>

科目:高中数学 来源: 题型:

在平面直角坐标系中,坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.已知直线l上两点M,N的极坐标分别为(2,0),(
2
3
3
π
2
).圆C的参数方程为
x=2+2cosθ
y=-3+2sinθ
,(θ为参数).
(Ⅰ)设P为线段MN的中点,求直线OP的平面直角坐标方程;
(Ⅱ)判断直线l与圆C的位置关系.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=log2(cosx-
1
2
)的定义域
 

查看答案和解析>>

同步练习册答案