精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=ln(x+1)-x,若对任意的x∈(0,+∞),有f(x)≥kx2成立,则实数k的取值范围为(  )
A.(-∞,-$\frac{1}{2}$)B.(-∞,-$\frac{1}{2}$]C.(-∞,-2]D.(-∞,-2)

分析 由题意任意的x∈[0,+∞),有f(x)≥kx2成立,可以令g(x)=f(x)-x2,求出g(x)的最大值小于0即可,可以利用导数研究g(x)的最值.

解答 解:当k≥0时,取x=1,有f(1)=ln2-1<0,故k≥0不合题意;
当k<0时,令g(x)=f(x)-kx2,即g(x)=ln(x+1)-x-kx2
求导函数可得g′(x)=$\frac{-x[2kx+(2k+1)]}{x+1}$,
令g′(x)=0,可得x1=0,x2=-$\frac{2k+1}{2k}$=-1-$\frac{1}{2k}$<-1,
当k<-$\frac{1}{2}$时,-1-$\frac{1}{2k}$<0,g′(x)>0在x∈(0,+∞)上恒成立,
g(x)在[0,+∞)上单调递增,
∴g(x)≥g(0)=0,
∴对任意的x∈[0,+∞),有f(x)≥kx2成立;
当-$\frac{1}{2}$<k<0时,x2=-1-$\frac{1}{2k}$>0,
g(x)在(0,-1-$\frac{1}{2k}$)上g′(x)<0,g(x)为减函数;
g(x)在(-1-$\frac{1}{2k}$,+∞)上g′(x)>0,g(x)为增函数;
因此存在x0∈(0,-1-$\frac{1}{2k}$)使得g(x0)≤g(0)=0,
可得ln(x0+1)-x0<kx02,即f(x0)<kx02,与题意矛盾;
∴综上:k≤-$\frac{1}{2}$时,对任意的x∈[0,+∞),有f(x)≥kx2成立,
∴实数 k的最小值为:(-∞,-$\frac{1}{2}$];
故选:B.

点评 此题考查函数的恒成立问题,第二问构造新函数,将问题转化为g(x)的最大值小于等于0,即可,这种转化的思想在高考中经常会体现,我们要认真体会.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=tanx,x∈(0,$\frac{π}{2}$),若x1,x2∈(0,$\frac{π}{2}$),且x1≠x2
(Ⅰ)用分析法证明:$\frac{1}{2}$[f(x1)+f(x2)]>f($\frac{{{x_1}+{x_2}}}{2}$);
(Ⅱ)借助图象,分析函数y1=ex,y2=lnx是否符合上述性质(无需证明).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知递增的等比数列{an}满足:a2=4,a1+a2+a3=14
(1)求数列{an}的通项公式;
(2)证明:数列{an}中任意三项不能构成等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知x,y的取值如表:
x01234
y11.33.25.68.9
若依据表中数据所画的散点图中,所有样本点(xi,yi)(i=1,2,3,4,5)都在曲线y=$\frac{1}{2}$x2+a附近波动,则a=(  )
A.1B.$\frac{1}{2}$C.$\frac{1}{3}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知不等式ax2-3x+2>0的解集为{x|x<1或x>b}.
(1)求a,b的值;
(2)解关于x的不等式ax2-(2b-a)x-2b<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.($\frac{2}{x}$+x)(1-$\sqrt{x}$)4的展开式中x的系数是(  )
A.1B.2C.3D.12

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知sinα和cosα是方程5x2-x+m=0的两实根.求:
(1)m的值;
(2)当α∈(0,π)时,求$\frac{1}{tan(3π-α)}$的值;
(3)sin3α+cos3α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若函数y=f(x)的定义域D中恰好存在n个值x1,x2,…,xn满足f(-xi)=f(xi)(i=1,2,…,n),则称函数y=f(x)为定义域D上的“n度局部偶函数”.
已知函数g(x)=$\left\{\begin{array}{l}{|sin(\frac{π}{2}x)|-1,x<0}\\{lo{g}_{a}x(a>0,a≠1),x>0}\end{array}\right.$是定义域为(-∞,0)∪(0,+∞)上的“3度局部偶函数”,则a的取值范围是($\frac{1}{4}$,$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,与函数f(x)=$\frac{{2}^{x}-{2}^{-x}}{{2}^{x}+{2}^{-x}}$的单调性与奇偶性都相同的是(  )
A.y=sinxB.y=x3-xC.y=2xD.y=lg(x+$\sqrt{{x}^{2}+1}$)

查看答案和解析>>

同步练习册答案