精英家教网 > 高中数学 > 题目详情
9.在△ABC中,若b=2asinB,则A等(  )
A.30°B.60°C.120°或60°D.30°或150°

分析 利用正弦定理化简已知的等式,根据B为三角形的内角,得到sinB不为0,在等式两边同时除以sinB,得到sinA的值,然后再由A为三角形的内角,利用特殊角的三角函数值即可得到A的度数.

解答 解:根据正弦定理$\frac{a}{sinA}=\frac{b}{sinB}$,
化简b=2asinB得:sinB=2sinAsinB,
∵sinB≠0,在等式两边同时除以sinB得sinA=$\frac{1}{2}$,
又A为三角形的内角,
则A=30°或150°.
故选:D.

点评 此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键,同时在求值时注意三角形内角的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在三棱柱ABC-A1B1C1中,底面是边长为4的等边三角形,侧棱垂直于底面,AA1=6,M是AC的中点.
(Ⅰ)求证:AB1∥平面MBC1
(Ⅱ)求四棱锥M-BB1C1C的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知x=-1是函数f(x)=x3-3x2-mx+10(m∈R)的一个极值点.
(2)求m的值;
(2)求函数f(x)在[-4,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.命题“?x0>0,2x0<x02”的否定为(  )
A.?x>0,2x<x2B.?x>0,2x≥x2C.?x≤0,2x<x2D.?x≤0,2x≥x2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知集合M是由具有如下性质的函数f(x)组成的集合:对于函数f(x),在定义域内存在两个变量x1,x2且x1<x2时有f(x1)-f(x2)>x1-x2.则下列函数:①f(x)=ex(x>0)②f(x)=$\frac{lnx}{x}$③f(x)=$\sqrt{x}$④f(x)=1+sinx在集合M中的个数是(  )
A.1个B.2个C.3个D.4个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.在△ABC中,A=120°,b=1,S△ABC=$\sqrt{3}$
(1)求a、c的大小;     
(2)求sin(B+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{9}=1$过点$(2,\frac{{3\sqrt{3}}}{2})$,则离心率为$\frac{{\sqrt{7}}}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数f(x)=$\frac{{\sqrt{3-ax}}}{{{a^2}-1}}$(a≠±1)在区间(0,1]上是减函数,则a的取值范围是(-1,0)∪(1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.如图是函数f(x)=x3+bx2+cx+d的大致图象,则x12+x22等于(  )
A.$\frac{16}{9}$B.$\frac{10}{9}$C.$\frac{8}{9}$D.$\frac{28}{9}$

查看答案和解析>>

同步练习册答案