精英家教网 > 高中数学 > 题目详情
函数f(x)=3+loga(x-1)(a>0,a≠1)的反函数图象恒过定点(  )
A、(a,1)
B、(3,1)
C、(3,2)
D、(2,3)
考点:对数函数的单调性与特殊点
专题:函数的性质及应用
分析:先求函数过的定点,再求关于y=x的对称点,对称点就是反函数过的定点.
解答: 解:函数f(x)=3+loga(x-1)恒过(2,3),
函数和它的反函数关于y=x对称,
那么(2,3)关于y=x的对称点是(3,2),
即(3,2)为反函数图象上的定点.
故选:C.
点评:本题考查反函数的性质,考查计算能力,是基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知a>b>1,则
lim
n→+∞
an-bn+1+1
an+1+bn-1
)的值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设向量
a
=(4,3),向量
a
在向量
b
上的投影为
5
2
2
b
在x抽正方向上的投影为2,且|
b
|≤14,则
b
为(  )
A、(2,14)
B、(2,-
2
7
C、(-2,
2
7
D、(2,8)

查看答案和解析>>

科目:高中数学 来源: 题型:

如果函数f(x)对任意两个不等实数x1,x2,且x1,x2∈(a,b)都有x1f(x1)+x2f(x2)>x1f(x2+x2f(x)1),则称函数f(x)为区间(a,b)上的“G”函数.给出下列命题:①f(x)=2x-sinx是R上的“G”函数;②f(x)=
x2+4x(x≥0)
x-1,x<0
是R上的“G”函数;③f(x)=
2x(x≥1)
2x+1,x<1
是R上的“G”函数;④若函数f(x)=ex-ax-2是R上的“G”函数,则a≤0.其中正确的个数为(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知非零向量
OA
OB
OC
OD
满足:
OA
OB
OC
OD
(α,β,γ∈R),B、C、D为不共线三点,给出下列命题:
①若α=
3
2
,β=
1
2
,γ=-1,则A、B、C、D四点在同一平面上;
②当α>0,β>0,γ=
2
时,若|
OA
|=
3
,|
OB
|=|
OC
|=|
OD
|=1,(
OB
OC
)=
6
,(
OD
OB
)=(
OD
OC
)=
π
2
,则α+β的最大值为
6
-
2

③已知正项等差数列{an}(n∈N*),若α=a2,β=a2009,γ=0,且A、B、C三点共线,但O点不在直线BC上,则
1
a3
+
4
a2008
的最小值为9;
④若α+β=1(α•β≠0),γ=0,则A、B、C三点共线且A分
BC
所成的比λ一定为
α
β

其中正确的命题个数是(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知命题p:“?x∈[1,2],x2-a≥0”,命题q:“方程x2+2ax+2-a=0有实数根”,若命题“¬p∨¬q”是假命题,则实数a的取值范围是(  )
A、a≤-2或a=1
B、a≤-2或1≤a≤2
C、a≥1
D、-2≤a≤1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线E:
x2
a2
-
y2
b2
=1(a>0,b>0)的左、右焦点分别为F1、F2,若点B(0,2b)在以F1、F2为直径的圆的外部,则该双曲线的离心率的取值范围为(  )
A、(
2
5
3
,+∞)
B、(1,
2
5
3
C、(
2
3
3
,+∞)
D、(1,
2
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

一个几何体的三视图如图所示,若其正视图的面积等于4cm2,俯视图是正三角形,则其侧视图的面积等于(  )
A、
3
cm2
B、2
3
cm2
C、2cm2
D、4cm2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点P为椭圆
x2
9
+
y2
5
=1上位于第一象限内的点,F1,F2是该椭圆的两个焦点,若△PF1F2的内切圆的半径为
1
2
,则点P的坐标是(  )
A、(
3
5
5
,2)
B、(
3
11
4
5
4
C、(
3
59
8
5
8
D、(2,
5
4

查看答案和解析>>

同步练习册答案