精英家教网 > 高中数学 > 题目详情
半径为R的球的内接正三棱柱的三个侧面积之和的最大值为(  )
A、3
3
R2
B、
3
R2
C、2
2
R2
D、
2
R2
考点:球内接多面体
专题:综合题,空间位置关系与距离
分析:设正三棱柱的底面边长为a,侧棱长为l,表示内接正三棱柱的三个侧面积之和,进而结合基本不等式可得S的最值.
解答: 解:设正三棱柱的底面边长为a,侧棱长为l,则得底面半径r=
3
3
a,(
l
2
2+r2=R2
∴l2=4R2-
4
3
a2,即l=2
R2-
a2
3

∴S=3al=6a
R2-
a2
3
=6
3•
a2
3
•(R2-
a2
3
)

≤6
3•(
a2
3
+R2-
a2
3
2
)2
=3
3
R2
即半径为R的球的内接正三棱柱的三个侧面积之和的最大值是3
3
R2
故选:A.
点评:本题考查的知识点是球的内接多面体,基本不等式,正确表示内接正三棱柱的三个侧面积之和是解答的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知球的两个平行截面的面积分别为5π和8π,它们位于球心的同一侧且距离为1,则球的半径是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四面体AOCB中,∠AOB=∠AOC=∠BOC=90°,OA=a,OB=b,OC=c,直角顶点O在底面ABC上的射影是H,则下列命题正确的有
 
.(写出所有正确命题的序号)
①底面△ABC是锐角三角形;
②四面体AOCB的对棱互相垂直;
③四面体AOCB的外接球半径R=
1
2
a2+b2+c2

④点H是△ABC的垂心;
2
OH2
=
1
a2
+
1
b2
+
1
c2

查看答案和解析>>

科目:高中数学 来源: 题型:

若函数y=f(x)(x∈R)满足f(x+2)=f(x)且x∈(-1,1]时,f(x)=1-x2,函数g(x)=
lg|x|,x≠0
1,x=0
,则函数h(x)=f(x)-g(x)在区间[-5,9]内的零点的个数为
 
个.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的导函数为f′(x),对?x∈R,f′(x)-f(x)<0,则对任意正数a有(  )
A、
f(a)
ea
>f(0)
B、
f(a)
ea
<f(0)
C、eaf(a)>f(0)
D、eaf(a)<f(0)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(3,4),
b
=(-2,1),若(
a
+x
b
)⊥
b
,则实数x为(  )
A、-
1
5
B、-
2
5
C、
1
5
D、
2
5

查看答案和解析>>

科目:高中数学 来源: 题型:

已知⊙C:x2+y2=9中弦AB的长为3
2
,则
AB
AC
=(  )
A、0
B、3
C、9
D、9
2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知P是△ABC所在的平面内一点,AB=4,
PA
+
PB
+
PC
=
0
PA
PB
=
PB
PC
=
PC
PA
,若点D、E分别满足
DC
=-
AC
BE
=3
EC
,则
AP
DE
=(  )
A、8
B、
3
C、-4
3
D、-8

查看答案和解析>>

科目:高中数学 来源: 题型:

在长为10厘米的线段AB上任取一点G,以AG为半径作圆,则圆的面积介于36π平方厘米到64π平方厘米的概率是(  )
A、
9
25
B、
16
25
C、
3
10
D、
1
5

查看答案和解析>>

同步练习册答案