分析 利用矩阵与矩阵相乘的运算法则和矩阵相等的性质直接求解.
解答 解:∵矩阵$A=[{\begin{array}{l}{-1}&2\\ 1&x\end{array}}],B=[{\begin{array}{l}1&1\\ 2&{-1}\end{array}}]$,向量$\overrightarrow{a}$=$[{\begin{array}{l}2\\ y\end{array}}]$,
∴A$\overrightarrow{a}$=$[\begin{array}{l}{-1}&{2}\\{1}&{x}\end{array}][\begin{array}{l}{2}\\{y}\end{array}]$=$[\begin{array}{l}{-2+2y}\\{2+xy}\end{array}]$,
B$\overrightarrow{a}$=$[\begin{array}{l}{1}&{1}\\{2}&{-1}\end{array}][\begin{array}{l}{2}\\{y}\end{array}]$=$[\begin{array}{l}{2+y}\\{4-y}\end{array}]$,
∵A$\overrightarrow{a}$=B$\overrightarrow{a}$,∴$[\begin{array}{l}{-2+2y}\\{2+xy}\end{array}]$=$[\begin{array}{l}{2+y}\\{4-y}\end{array}]$,
∴$\left\{\begin{array}{l}{-2+2y=2+y}\\{2+xy=4-y}\end{array}\right.$,解得x=-$\frac{1}{2}$,y=4.
点评 本题考查实数值的求法,是基础题,解题时要认真审题,注意矩阵与矩阵相乘的运算法则和矩阵相等的性质的合理运用.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=1-x | B. | y=x2-x | C. | $y=-\frac{1}{x+1}$ | D. | y=-|x| |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com