精英家教网 > 高中数学 > 题目详情
2.已知Sn是等差数列{an}的前n项和,且满足S3=9,a4=7.
(1)求{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和Tn

分析 (1)通过S3=3a1+3d=9及a4=a1+3d=7,计算即得结论;
(2)通过an=2n-1可得bn=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),利用并项相加法计算即得结论.

解答 解:(1)依题意有S3=a1+a2+a3=3a1+3d=9,
同时又a4=a1+3d=7,
∴a1=1,d=2,
∴an=a1+(n-1)d=2n-1;
(2)∵an=2n-1,
∴bn=$\frac{1}{{a}_{n}{a}_{n+1}}$
=$\frac{1}{(2n-1)(2n+1)}$
=$\frac{1}{2}$($\frac{1}{2n-1}$-$\frac{1}{2n+1}$),
∴Tn=$\frac{1}{2}$(1-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{5}$+…+$\frac{1}{2n-1}$-$\frac{1}{2n+1}$)
=$\frac{1}{2}$(1-$\frac{1}{2n+1}$)
=$\frac{n}{2n+1}$.

点评 本题考查求数列的通项及求和,考查并项相加法,注意解题方法的积累,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.由曲线y=cosx,x=$\frac{π}{2}$,x=$\frac{3π}{2}$,y=0围成的封闭图形的面积为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在20件产品中,有2件次品,从中任取5件,
(Ⅰ)在其中恰有2件次品的抽法有多少种?
(Ⅱ)抽出的5件都是合格品的抽法有多少种?
(Ⅲ)其中至少有1件次品的抽法有多少种?(以上问题,均要求写出式子和运算出的数字结果)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知向量$\vec a=(\sqrt{3},1)$,$\vec b=(1,\sqrt{3})$,$\vec c=(-1-cosα,sinα)$,α为锐角.
(Ⅰ)求向量$\vec a$,$\vec b$的夹角;
(Ⅱ)若$\vec b⊥\vec c$,求α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.函数y=sinx-$\sqrt{3}$cosx的图象的一条对称轴方程是(  )
A.x=$\frac{π}{6}$B.x=$\frac{π}{3}$C.x=$\frac{2π}{3}$D.x=$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知向量$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(x,2),且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则实数x的值为-4.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某校举办安全法规知识竞赛,从参赛的高一、高二学生中各抽出100人的成绩作为样本.对高一年级的100名学生的成绩进行统计,得到成绩分布的频率分布直方图如图:
(1)若规定60分以上为合格,计算高一年级这次知识竞赛的合格率;
(2)将上述调查所得到的频率视为概率.现在从该校大量高一学生中,采用随机抽样方法每次抽取1名学生,抽取3次,记被抽取的3名学生中的合格人数为X.若每次抽取的结果是相互独立的,求X的分布列和期望E(X);
(3)若高二年级这次知识竞赛的合格率为60%,由以上统计数据填写2×2列联表,并问是否有99%的把握认为“这次知识竞赛的成绩与年级有关系”.
高一高二合计
合格人数
不合格人数
合计

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若等差数列{an}满足an+1+an=4n,则其前n项和Sn=n2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知复数z1=1+ai(其中a>0),且z12为纯虚数.
(Ⅰ)求复数z1
(Ⅱ)若z2=$\frac{z_1}{1-i}$,求复数z2的模|z2|.

查看答案和解析>>

同步练习册答案