精英家教网 > 高中数学 > 题目详情
4.若函数f(x)=alnx+$\frac{1}{x}$在区间(1,+∞)上单调递增,则实数a的取值范围是(  )
A.(-∞,-2]B.(-∞,-1]C.[1,+∞)D.[2,+∞)

分析 求导数f′(x)=$\frac{ax-1}{{x}^{2}}$,所以根据已知的f(x)在(1,+∞)上单调递增可得到ax-1≥0在(1,+∞)上恒成立,而a=0和a<0都不能满足ax-1≥0恒成立,所以需a>0.所以一次函数ax-1为增函数,所以有a-1≥0,这样即求出了实数a的取值范围.

解答 解:f′(x)=$\frac{a}{x}-\frac{1}{{x}^{2}}=\frac{ax-1}{{x}^{2}}$;
∵f(x)在(1,+∞)上单调递增;
∴f′(x)≥0在(1,+∞)上恒成立;
∴ax-1≥0在(1,+∞)上恒成立;
显然,需a>0;
∴函数y=ax-1在[1,+∞)上是增函数;
∴a-1≥0,a≥1;
∴实数a的取值范围是[1,+∞).
故选:C.

点评 考查函数的单调性和函数导数符号的关系,以及一次函数的单调性,以及对增函数定义的运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.“a>b”是“3a>3b”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB∥CD,PC⊥底面ABCD,PC=AB=2AD=2CD=2,E是PB的中点.
(Ⅰ)求证:平面EAC⊥平面PBC;
(Ⅱ)求二面角P-AC-E的余弦值;
(Ⅲ)求直线PA与平面EAC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设全集U={0,1,2,3,4,5,6},子集A={0,m,n},B={1,m2-1,n+3},且1∉A∩B.
(1)求m、n的值;
(2)求集合∁U(A∪∁UB).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求证:$\frac{1}{2}$+$\frac{1}{3}$+…+$\frac{1}{n}$<lnn.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数y=f(x)在区间(0,1)上有f′(x)>0,在区间(1,2)上有f′(x)<0,则有(  )
A.f(x)区间(0,1)上单调递减,在区间(1,2)上单调递增
B.f(x)区间(0,1)上单调递减,在区间(1,2)上单调递减
C.f(x)区间(0,1)上单调递增,在区间(1,2)上单调递增
D.f(x)区间(0,1)上单调递增,在区间(1,2)上单调递减

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知△ABC的面积为1,三边长分别为a,b,c,则a2+2bc的最小值为(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.3$\sqrt{3}$D.4$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知i是虚数单位,C是全体复数构成的集合,若映射f:C→R满足:对任意z1,z2∈C,以及任意λ∈R,都有f(λz1+(1-λ)z2)=λf(z1)+(1-λ)f(z2),则称映射f具有性质P.给出如下映射:
①f1:C→R,f1(z)=x-y,z=x+yi(x,y∈R);
②f2:C→R,f2(z)=x2-y,z=x+yi(x,y∈R);
③f3:C→R,f3(z)=2x+y,z=x+yi(x,y∈R);
其中,具有性质P的映射的序号为(  )
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知数列{an}满足a1=1,an+1=2an,则a12+a22+…+an2=$\frac{{4}^{n}-1}{3}$.

查看答案和解析>>

同步练习册答案