精英家教网 > 高中数学 > 题目详情
已知向量
a
b
满足(
.
a
+2
b
)•(
a
-
b
)=-6
,且|
a
|=1,|
b
|=2
,则
a
b
上的投影为
 
考点:平面向量数量积的运算
专题:平面向量及应用
分析:由向量数量积的运算化简已知的是,利用条件和向量的投影的含义可得:|
a
|cosθ=
1
2
,即可得到答案.
解答: 解:由题意得,(
.
a
+2
b
)•(
a
-
b
)=-6
,则
a
2
-2
b
2
+
a
b
=-6

因为|
a
|=1,|
b
|=2
,设两个向量
a
b
的夹角是θ,
所以|
a
||
b
|cosθ=1
,则|
a
|cosθ=
1
2
,即
a
b
上投影为
1
2

故答案为:
1
2
点评:本题考查向量数量积的运算,以及向量的投影的含义,解题的关键是抓住向量的投影的含义,结合已知条件化简.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在直角△ABC中,B=90°,BC=1,AB=
3
,其中D,E分别是线段AB和AC的点,且
AD
AB
=
AE
AC
=λ(0<λ<1),将△ADE沿直线DE翻折成△A′DE,使得平面A′DE⊥平面BCED.
(Ⅰ)证明:DE⊥A′B;
(Ⅱ)是否存在这样的实数λ,使得二面角B-A′C-E的大小为90°,如果存在,请求出λ的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)函数f(x)=ax(a>0,a≠1)在区间[1,2]上的最大值与最小值之和为6,求a的值;
(2)0≤x≤2,求函数y=4 x-
1
2
-3•2x+5的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

正四棱柱ABCD-ABCD中,已知AB=2,E,F分别是D1B,AD的中点,cos<
DD1
CE
>=
3
3

(1)以D为坐标原点,建立适当的坐标系,求出E点的坐标;
(2)证明:EF⊥D1B且EF⊥AD
(3)求二面角D1-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

过抛物线y2=4x的焦点作倾斜角为45°的直线l交抛物线于A,B两点,O为坐标原点,△OAB的面积为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知矩阵,A=
1
1
,向量
β
=
2
1
,求向量
α
,使得A2
α
=
β

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC的三个内角A、B、C,向量
m
=(sinA,1),
n
=(1,-
3
cosA),且
m
n
.则角A=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=x•e-x在x∈[2,4]上的最小值为(  )
A、0
B、
1
e
C、
4
e4
D、
2
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

已知△ABC满足|AB|=4,O是△ABC所在平面内一点,满足
OA
2
=
OB
2
=
OC
2
,且
OA
+
OB
AC
,λ∈R,则
BO
BA
=(  )
A、8
2
B、8
C、4
2
D、4

查看答案和解析>>

同步练习册答案