精英家教网 > 高中数学 > 题目详情
15.若集合A=[-3,2],B={x|$\frac{2x+1}{x-1}$≥1},则A∩B═(  )
A.[-2,2]B.[-2,-1]C.[-3,-2]∪[1,2]D.[-3,-2]∪(1,2]

分析 求出B中不等式的解集确定出B,找出A与B的交集即可.

解答 解:集合B中不等式变形得:$\frac{x+2}{x-1}$≥0,即(x+2)(x-1)≥0,且x-1≠0,
解得:x≤-2或x>1,即B=(-∞,-2]∪(1,+∞),
∵A=[-3,2],
∴A∩B=[-3,-2]∪(1,2],
故选:D.

点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.政府向市民宣传绿色出行(即乘公共汽车、地铁或步行出行),并进行广泛动员,三个月后,统计部门在一个小区随机抽取了100户家庭,调查了他们在政府动员后三个月的月平均绿色出行次数(单位:次),将所得数据分组,画出频率分布直方图(如图所示).
(1)请估计该小区在政府动员后平均每月绿色出行多少次;
(2)由直方图可以认为该小区居民绿色出行次数M服从正态分布N(μ,σ2),其中μ近似为小区平均绿色出行次数,σ2近似为绿色出行次数的方差.
①利用该正态分布求P(13<M<65);
(注:P(μ-σ<M<μ+σ)=0.6826,P(μ-2σ<M<μ+2σ)=0.9544).
②为了解动员后市民的出行情况,媒体计划在上述家庭中,从政府动员后月均绿色出行次数在[5,25)范围内的家庭中选出5户作为采访对象,其中在[5,15)内抽到X户,求P(X=4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知:函数f(x)=$\frac{3x+2}{x-1}$,求f-1($\frac{1}{2}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\left\{\begin{array}{l}{1-{2}^{1-x}(x≥1)}\\{{x}^{2}-3x+2(x<1)}\end{array}\right.$,则方程4f(x)=1的实根个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.从包含A同学的若干名同学中选出4名参加英语、数学、物理、化学竞赛,每名同学只参加一科竞赛,若A同学不参加英语,数学竞赛,则共有72种不同的参赛方法,一共有多少名同学参加竞赛?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.解方程:ex+e-x-a=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若函数f(x)=$\frac{1}{3}m{x^3}+{x^2}$-m在x=1处取得极值,则实数m的值是-2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=12lnx+3x2-18x+8a.
(1)若a=2,求f(x)的极大值和极小值;
(2)若对任意的x∈(0,4],f(x)<4a恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.甲乙两同学相约游玩某一个景区,进景区前了解到景区共有6个景点,他们约定,各自独立地从1到6号景点中任选4个进行游览,每个景点参观1小时.
(1)如果6个景点中有4个人文景观和2个自然景观,求甲同学至少游览一个自然景观的概率.
(2)求他们最后一小时在同一个景点的概率.

查看答案和解析>>

同步练习册答案