精英家教网 > 高中数学 > 题目详情
已知数列{an}的前n项和为Sn,对一切正整数n,点Pn(n,Sn)都在函数f(x)=x2+2x的图象上.
(1)求a1,a2;并求数列{an}的通项公式;
(2)若bn=
1
anan+1an+2
=k(
1
anan+1
-
1
an+1an+2
),求k,
(3)证明数列{bn}的前n项和Tn
1
60
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件得Sn=n2+2n,n∈N*,由此推导出a1=S1=3,a2=5,an=Sn-Sn-1=2n+1,由此能求出数列{an}的通项公式.
(2)由(1)得bn=
1
(2n+1)(2n+3)(2n+5)
=
1
4
[
1
(2n+1)(2n+3)
-
1
(2n+3)(2n+5)
]
,由此能求出k.
(3)利用裂项求和法求出Tn=
1
4
[
1
3×5
-
1
(2n+3)(2n+5)
]
=
1
60
-
1
4(2n+3)(2n+5)
,由此能证明Tn
1
60
解答: (1)解:∵点Pn(n,Sn)都在函数f(x)=x2+2x的图象上.
Sn=n2+2n,n∈N*
∴a1=S1=3,(2分)
a1+a2=S2=22+2×2=8,∴a2=5.(4分)
由(1)知,Sn=n2+2n,n∈N*
当n≥2时,an=Sn-Sn-1=2n+1,(6分)
由(1)知,a1=3=2×1+1满足上式,(7分)
∴数列{an}的通项公式为an=2n+1.(8分)
(2)解:由(1)得bn=
1
(2n+1)(2n+3)(2n+5)

=
1
4
[
1
(2n+1)(2n+3)
-
1
(2n+3)(2n+5)
]

∵bn=
1
anan+1an+2
=k(
1
anan+1
-
1
an+1an+2
),
∴k=
1
4

(3)证明:Tn=
1
4
[
1
3×5
-
1
5×7
+
1
5×7
-
1
7×9
+…+
1
(2n+1)(2n+3)
-
1
(2n+3)(2n+5)
]
(12分)
=
1
4
[
1
3×5
-
1
(2n+3)(2n+5)
]

=
1
60
-
1
4(2n+3)(2n+5)
1
60

∴Tn
1
60
.(14分)
点评:本题考查数列的通项公式的求法,考查不等式的证明,解题时要认真审题,注意裂项求和法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

当x=5时.用秦九韶算法计算f(x)=12x6+5x5+11x2+2x+5的值时,需要进行的乘法和加法的次数分别是(  )
A、12,6B、6,6
C、15,4D、6,4

查看答案和解析>>

科目:高中数学 来源: 题型:

设实数a,b,c满足a+b+c=0,则a,b,c中(  )
A、至多有一个不大于0
B、至少有一个不小于0
C、至多有两个不小于0
D、至少有两个不小于0

查看答案和解析>>

科目:高中数学 来源: 题型:

下列式子正确的是(  )
A、a2+
1
a2+1
≥1
B、sinx+
1
sinx
≥2(0<x<
π
2
C、
x
+
1
x
>2
D、x+
1
x
≥2

查看答案和解析>>

科目:高中数学 来源: 题型:

如图长方体ABCD-A1B1C1D1中,AB=AD=2
3
,CC1=
2

(1)求BC1与面ACC1A1所成角的大小;
(2)求二面角C1-BD-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线y2=8x,△ABC中,点A与抛物线的焦点重合,B,C在抛物线上,且△ABC是以角A为直角的等腰直角三角形,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

双曲线C:
x2
a2
-
y2
b2
=1(a>0,b>0)的右焦点在直线l:ρsin(θ+
π
4
=
2
)(原点为极点、x轴正半轴为极轴)上,右顶点到直线l的距离为
2
2
,则双曲线C的渐近线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

作出函数y=
1-|x|
|1-x|
的图象,并求其分段解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,正三棱柱ABC-A1B1C1中,AA1=AB,E是侧棱AA1的中点.
(Ⅰ)证明:BC1⊥EC;
(Ⅱ)求二面角A-EC-B的余弦值.

查看答案和解析>>

同步练习册答案