分析 (1)由题意,抛物线的准线方程为x=-1,即可求出抛物线的方程;
(2)设AM的方程为y=k(x+1),代入抛物线的方程,可得ky2-4y+4k=0,设M(x1,y1),N(x2,y2),Q(x3,y3),则y1y2=4,直线MB的方程为y+1=$\frac{4}{{y}_{1}+{y}_{3}}$(x-1),可得y2y3+4(y2+y3)+4=0,直线QN的方程为y-y2=$\frac{4}{{y}_{2}+{y}_{3}}$(x-x2),可得y2y3-y(y2+y3)+4x=0,即可得出直线QN过定点.
解答 (1)解:由题意,抛物线的准线方程为x=-1,
∴抛物线的方程为y2=4x;
(2)证明:设AM的方程为y=k(x+1),代入抛物线的方程,可得ky2-4y+4k=0
设M(x1,y1),N(x2,y2),Q(x3,y3),则y1y2=4,
由kMQ=$\frac{{y}_{1}-{y}_{3}}{{x}_{1}-{x}_{3}}$=$\frac{{y}_{1}-{y}_{3}}{\frac{{{y}_{1}}^{2}}{4}-\frac{{{y}_{3}}^{2}}{4}}$=$\frac{4}{{y}_{1}+{y}_{3}}$,
直线MB的方程为y+1=$\frac{4}{{y}_{1}+{y}_{3}}$(x-1),
∴y1+1=$\frac{4}{{y}_{1}+{y}_{3}}$(x1-1),
可得y1=-$\frac{4+{y}_{3}}{1+{y}_{3}}$,
∴$\frac{4}{{y}_{2}}$=-$\frac{4+{y}_{3}}{1+{y}_{3}}$,
∴y2y3+4(y2+y3)+4=0
直线QN的方程为y-y2=$\frac{4}{{y}_{2}+{y}_{3}}$(x-x2)
可得y2y3-y(y2+y3)+4x=0,
∴x=1,y=-4,
∴直线QN过定点(1,-4)
点评 本题考查抛物线的方程,考查直线与抛物线的位置关系,考查直线过定点,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{1}{7}$ | B. | $\frac{1}{7}$ | C. | $\frac{59}{117}$ | D. | $\frac{11}{13}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{4}$ | B. | -$\frac{1}{4}$ | C. | $\frac{\sqrt{3}}{4}$ | D. | -$\frac{\sqrt{3}}{4}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com