分析 (1)利用图象在点x=0处的切线为y=bx,求出a,b,即可求函数f(x)的解析式;
(2)令φ(x)=f(x)+x2-x=ex-x-1,确定函数的单调性,可得φ(x)min=φ(0)=0,即可证明:f(x)≥-x2+x;
(3)f(x)≥kx对任意的x∈(0,+∞)恒成立?$\frac{f(x)}{x}$≥k对任意的x∈(0,+∞)恒成立,k≤g(x)min=g(1)=0,即可求实数k的取值范围.
解答 解:(1)f(x)=ex-x2+a,f'(x)=ex-2x.
由已知 $\left\{\begin{array}{l}{f(0)=1+a=0}\\{f′(0)=1=b}\end{array}\right.$⇒$\left\{\begin{array}{l}{a=-1}\\{b=1}\end{array}\right.$,f(x)=ex-x2-1.…(4分)
(2)令φ(x)=f(x)+x2-x=ex-x-1,φ'(x)=ex-1,由φ'(x)=0,得x=0,
当x∈(-∞,0)时,φ'(x)<0,φ(x)单调递减;
当x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增.
∴φ(x)min=φ(0)=0,从而f(x)≥-x2+x.…(8分)
(3)f(x)>kx对任意的x∈(0,+∞)恒成立
?$\frac{f(x)}{x}$≥k对任意的x∈(0,+∞)恒成立,
令g(x)=$\frac{f(x)}{x}$,x>0,
∴g′(x)=$\frac{(x-1){(e}^{x}-x-1)}{{x}^{2}}$,
由(2)可知当x∈(0,+∞)时,ex-x-1>0恒成立,…(10分)
令g'(x)>0,得x>1;g'(x)<0,得0<x<1.
∴g(x)的增区间为(1,+∞),减区间为(0,1).g(x)min=g(1)=0.
∴k≤g(x)min=g(1)=e-2,∴实数k的取值范围为(-∞,e-2].…(14分)
点评 此题主要考查了利用导数求闭区间上函数的最值问题,考查了函数的单调性,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{49}{99}$ | B. | $\frac{50}{101}$ | C. | $\frac{51}{103}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{3}$ | B. | $\sqrt{5}$+1 | C. | $\sqrt{2}$ | D. | 2+$\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2,5 | B. | 2+a,5 | C. | 2+a,5+a | D. | 2,5+a |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(sinA)•sin2B>f(sinB)•sin2A | B. | f(sinA)•sin2B<f(sinB)•sin2A | ||
| C. | f(cosA)•sin2B>f(sinB)•cos2A | D. | f(cosA)•sin2B<f(sinB)•cos2A |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com