精英家教网 > 高中数学 > 题目详情
4.某射手射中10环、9环、8环的概率分别为0.24,0.28,0.19,那么,在一次射击训练中,该射手射击一次不够9环的概率为(  )
A.0.48B.0.52C.0.71D.0.29

分析 利用对立事件的概率的性质计算即可.

解答 解:∵某射手一次射击中,击中10环、9环、8环的概率分别是0.24,0.28,0.19,
∴这射手在一次射击中不够9环的概率p=1-0.24-0.28=0.48.
故选:A

点评 本题考查概率的性质的应用,是基础题.解题时要认真审题,注意对立事件的概率的性质的应用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=$\sqrt{3}$sin(π-ωx)sin($\frac{π}{2}$+ωx)+cos2ωx-$\frac{1}{2}$,ω>0,其图象上相邻三个最值点构成的三角形的面积为π.
(1)求函数f(x)的最小正周期以及单调递增区间;
(2)设△ABC的内角A满足f(A)=1且$\overrightarrow{AB}$•$\overrightarrow{AC}$=$\sqrt{3}$,求边BC的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设函数f(x)=ax-$\frac{a}{x}$-2lnx(a>0).
(Ⅰ)若x=2是f(x)的极值点,求f(x)的极大值;
(Ⅱ)若f(x)在定义域上是单调函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设二次函数f(x)=mx2-4x+4与g(x)=x2-4mx+4m2-4m-5,其中m∈Z且m≠0,求函数f(x)和g(x)的零点均为整数的充要条件.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知实数a,b,c满足不等式0<a<b<c<1,且M=2a,N=5-b,P=$(\frac{1}{7}{)^c}$,则M、N、P的大小关系为(  )
A.M>N>PB.P<M<NC.N>P>MD.P>N>M

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知Sn为等差数列{an}的前n项和,且a6+a7=18,则S12=108.(考点:数列的性质)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知平面α截一球O得圆M,圆M的半径为r,圆M上两点A、B间的弧长为$\frac{πr}{2}$,又球心O到平面α的距离为r,则A、B两点间的球面距离为$\frac{{\sqrt{2}πr}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.为了应对金融危机,一公司决定从某办公室10名工作人员中裁去4人,要求A、B二人不能全部裁掉,则不同的裁员方案的种数为(  )
A.70B.126C.182D.210

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.△ABC中,如果$\frac{a}{tanA}$=$\frac{b}{tanB}$=$\frac{c}{tanC}$,那么△ABC的形状是等边三角形.

查看答案和解析>>

同步练习册答案