精英家教网 > 高中数学 > 题目详情
如图,在棱长为a的正方体ABCD-A1B1C1D1中,点E是棱D1D的中点,点F在棱B1B上,且满足B1F=2FB.
(1)求证:EF⊥A1C1
(2)在棱C1C上确定一点G,使A,E,G,F四点共面,并求此时C1G的长;
(3)求平面AEF与平面ABCD所成二面角的余弦值.
考点:与二面角有关的立体几何综合题,空间中直线与平面之间的位置关系
专题:空间位置关系与距离,空间角
分析:(1)连结B1D1,BD,由已知条件推导出A1C1⊥DD1,从而得到A1C1⊥平面BB1D1D.由此能证明EF⊥A1C1
(2)以点D为坐标原点,以DA,DC,DD1所在的直线分别为x轴,y轴,z轴,建立空间直角坐标系,利用向量法能求出当C1G=
1
6
a
时,A,E,G,F四点共面.
(3)利用已知条件求出平面AEF的法向量和平面ABCD的一个法向量,由此能求出平面AEF与平面PQ所成二面角的余弦值.
解答: (1)证明:连结B1D1,BD,∵四边形A1B1C1D1是正方形,∴B1D1⊥A1C1
在正方体ABCD-A1B1C1D1中,
∵DD1⊥平面A1B1C1D1,A1C1?平面A1B1C1D1,∴A1C1⊥DD1
∵B1D1∩DD1=D1,B1D1,DD1?平面BB1D1D,∴A1C1⊥平面BB1D1D.
∵EF?平面BB1D1D,∴EF⊥A1C1
(2)解:以点D为坐标原点,
以DA,DC,DD1所在的直线分别为x轴,y轴,z轴,
建立如图的空间直角坐标系,
则A(a,0,0),A1(a,0,a),C1(0,a,a),E(0,0,
1
2
a)
F(a,a,
1
3
a)

A1C1
=(-a,a,0)
EF
=(a,a,-
1
6
a)

设G(0,a,h),
∵平面ADD1A1∥平面BCC1B1,平面ADD1A1∩平面AEGF=AE,
平面BCC1B1∩平面AEGF=FG,
∴存在实数λ,使得
FG
AE

AE
=(-a,0,
1
2
a)
FG
=(-a,0,h-
1
3
a)

(-a,0,h-
1
3
a)=λ(-a,0,
1
2
a)

∴λ=1,h=
5
6
a
.∴C1G=CC1-CG=a-
5
6
a=
1
6
a

∴当C1G=
1
6
a
时,A,E,G,F四点共面.
(3)解:由(1)知
AE
=(-a,0,
1
2
a)
AF
=(0,a,
1
3
a)

n
=(x,y,z)是平面AEF的法向量,
n
AE
=0
n
AF
=0
,即
-ax+
1
2
az=0
ay+
1
3
az=0.
取z=6,则x=3,y=-2.
所以
n
=(3,-2,6)是平面AEF的一个法向量.
DD1
=(0,0,a)
是平面ABCD的一个法向量,
设平面AEF与平面ABCD所成的二面角为θ,
则cosθ=
|0×3+0×(-2)+a×6|
32+(-2)2+62
×|a|
=
6
7

故平面AEF与平面PQ所成二面角的余弦值为
6
7
点评:本小题主要考查空间线面关系、四点共面、二面角的平面角、空间向量及坐标运算等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

半径为1的球的内接正三棱柱(底面是正三角形的直棱柱)的侧面积为3
3
,则正三棱柱的高为(  )
A、2
2
B、
3
C、2
3
D、
2

查看答案和解析>>

科目:高中数学 来源: 题型:

若复数z满足z=i(2+4i)(i是虚数单位),则在复平面内,z对应的点的坐标是(  )
A、(-4,2)
B、(-2,4)
C、(2,4)
D、(4,2)

查看答案和解析>>

科目:高中数学 来源: 题型:

f(x)定义域为(0,+∞),且满足f(x)-2x•f(
1
 x
)+3x2=0,求f(x)=?

查看答案和解析>>

科目:高中数学 来源: 题型:

某高中毕业学年,在高校自主招生期间,把学生的平时成绩按“百分制”折算,排出前n名学生,并对这n名学生按成绩分组,第一组[75,80),第二组[80,85),第三组[85,90),第四组[90,95),第五组[95,100],如图为频率分布直方图的一部分,其中第五组、第一组、第四组、第二组、第三组的人数依次成等差数列,且第四组的人数为60.
(Ⅰ)请在图中补全频率分布直方图;
(Ⅱ)若Q大学决定在成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进行面试.
①若Q大学本次面试中有B、C、D三位考官,规定获得两位考官的认可即面试成功,且面试结果相互独立,已知甲同学已经被抽中,并且通过这三位考官面试的概率依次为
1
2
1
3
1
5
,求甲同学面试成功的概率;
②若Q大学决定在这6名学生中随机抽取3名学生接受考官B的面试,第3组中有ξ名学生被考官B面试,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

甲,乙,丙三人参加某次招聘会,假设甲能被聘用的概率是
2
5
,甲,丙两人同时不能被聘用的概率是
6
25
,乙,丙两人同时能被聘用的概率是
3
10
,且三人各自能否被聘用相互独立.
(1)求乙,丙两人各自能被聘用的概率;
(2)设ξ表示甲,乙,丙三人中能被聘用的人数与不能被聘用的人数之差的绝对值,求ξ的分布列与均值(数学期望).

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B,C是△ABC的三个内角,且满足sin2A-sin2B+sin2C=
2
sinAsinC

(Ⅰ)求角B;
(Ⅱ)若sinA=
3
5
,求cosC的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

下列四个命题:
①函数y=-
1
x
在其定义域上是增函数;
②y=x和y=
x2
表示同一个函数;
③y=x2-2|x|-3的递增区间为[1,+∞);
④若2a=3b<1,则a<b<0.
其中正确命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

若不等式组
x+y-1≤0
x-2y-1≥0
kx+y+1≥0
表示的平面区域是三角形,则实数k的取值范围是
 

查看答案和解析>>

同步练习册答案